Mapping of on-set fixed polarity Reed-Muller coefficients from on-set canonical sum of products coefficients and the minimization of pseudo Reed-Muller expressions

In this paper, a more efficient tabular method for mapping on-set fixed polarity Reed–Muller coefficients for a given polarity vector from on-set canonical sum of products coefficients is developed. Using this mapping technique, a heuristic algorithm for generating optimal pseudo Reed–Muller expressions from canonical sum of products expressions is also developed. Illustrative examples and experimental results are included to show the performance of the developed algorithms.

[1]  Chip-Hong Chang,et al.  An exact minimizer of fixed polarity Reed-Muller expansions , 1995 .

[2]  David H. Green,et al.  Modern logic design , 1986 .

[3]  Tsutomu Sasao,et al.  On the complexity of mod-2l sum PLA's , 1990 .

[4]  Malgorzata Marek-Sadowska,et al.  Boolean Functions Classification via Fixed Polarity Reed-Muller Forms , 1997, IEEE Trans. Computers.

[5]  Mark G. Karpovsky,et al.  Fault Detection in Combinational Networks by Reed-Muller Transforms , 1989, IEEE Trans. Computers.

[6]  Tsutomu Sasao And-Exor Expressions and their Optimization , 1993 .

[7]  Malgorzata Marek-Sadowska,et al.  Minimisation of fixed-polarity AND/XOR canonical networks , 1994 .

[8]  Lawrence T. Fisher Unateness Properties of and-Exclusive-or Logic Circuits , 1974, IEEE Transactions on Computers.

[9]  Malgorzata Marek-Sadowska,et al.  Boolean Matching Using Generalized Reed-Muller Forms , 1994, 31st Design Automation Conference.

[10]  Tsutomu Sasao,et al.  Exact Minimization of AND - EXOR Expressions using Multi - terminal EXOR Ternary Decision Diagrams. , 1995 .

[11]  Santanu Chattopadhyay,et al.  Synthesis of Highly Testable Fixed-Polarity AND-XOR Canonical Networks-A Genetic Algorithm-Based Approach , 1996, IEEE Trans. Computers.

[12]  Jon C. Muzio,et al.  Boolean Matrix Transforms for the Minimization of Modulo-2 Canonical Expansions , 1992, IEEE Trans. Computers.

[13]  Md. Mozammel Huq Azad Khan and Md. Shamsul Alam Mapping of fixed polarity Reed-Muller coefficients from minterms and the minimization of fixed polarity Reed-Muller expressions , 1997 .

[14]  D. Green Reed-Muller canonical forms with mixed polarity and their manipulations , 1990 .

[15]  J. C. Muzio,et al.  Boolean matrix transforms for the parity spectrum and minimisation of modulo-2 canonical expansions , 1991 .

[16]  Malgorzata Marek-Sadowska,et al.  Generalized Reed-Muller Forms as a Tool to Detect Symmetries , 1996, IEEE Trans. Computers.

[17]  SUDHAKAR M. REDDY,et al.  Easily Testable Realizations ror Logic Functions , 1972, IEEE Transactions on Computers.

[18]  Marek A. Perkowski,et al.  Fast exact and quasi-minimal minimization of highly testable fixed-polarity AND/XOR canonical networks , 1992, [1992] Proceedings 29th ACM/IEEE Design Automation Conference.

[19]  P. Thomson,et al.  Tabular techniques for Reed—Muller logic , 1991 .

[20]  B. Harking Efficient algorithm for canonical Reed-Muller expansions of Boolean functions , 1990 .

[21]  Suman Purwar An Efficient Method of Computing Generalized Reed-Muller Expansions from Binary Decision Diagram , 1991, IEEE Trans. Computers.

[22]  Marek Perkowski,et al.  One more way to calculate generalized Reed-Muller expansions of boolean functions , 1991 .