Matroidal frameworks for topological Tutte polynomials

Abstract We introduce the notion of a delta-matroid perspective. A delta-matroid perspective consists of a triple ( M , D , N ) , where M and N are matroids and D is a delta-matroid such that there are strong maps from M to the upper matroid of D and from the lower matroid of D to N. We describe two Tutte-like polynomials that are naturally associated with delta-matroid perspectives and determine various properties of them. Furthermore, we show when the delta-matroid perspective is read from a graph in a surface our polynomials coincide with B. Bollobas and O. Riordan's ribbon graph polynomial and the more general Krushkal polynomial of graphs in surfaces. This is analogous to the fact that the Tutte polynomial of a graph G coincides with the Tutte polynomial of its cycle matroid. We use this new framework to prove results about the topological graph polynomials that cannot be realised in the setting of cellularly embedded graphs.

[1]  James G. Oxley,et al.  Matroid theory , 1992 .

[2]  Iain Moffatt,et al.  Graphs on Surfaces - Dualities, Polynomials, and Knots , 2013, Springer Briefs in Mathematics.

[3]  Convolution-multiplication identities for Tutte polynomials of graphs and matroids , 2010, J. Comb. Theory, Ser. B.

[4]  Joanna A. Ellis-Monaghan,et al.  A recipe theorem for the topological Tutte polynomial of Bollobás and Riordan , 2009, Eur. J. Comb..

[5]  Spencer Backman,et al.  A convolution formula for Tutte polynomials of arithmetic matroids and other combinatorial structures , 2016, 1602.02664.

[6]  Béla Bollobás,et al.  A polynomial of graphs on surfaces , 2002 .

[7]  Victor Reiner,et al.  A Convolution Formula for the Tutte Polynomial , 1999, J. Comb. Theory, Ser. B.

[8]  André Bouchet,et al.  Maps and Delta-matroids , 1989, Discret. Math..

[9]  Dominic Welsh,et al.  The Tutte polynomial , 1999, Random Struct. Algorithms.

[10]  André Bouchet,et al.  Representability of △-matroids over GF(2) , 1991 .

[11]  Joachim Kock,et al.  Incidence Hopf algebras , 2011 .

[12]  S. Chmutov,et al.  Polynomial invariants of graphs on surfaces , 2010, 1012.5053.

[13]  Michel Las Vergnas,et al.  External and internal elements of a matroid basis , 1998, Discret. Math..

[14]  Michel Las Vergnas,et al.  On the Tutte Polynomial of a Morphism of Matroids , 1980 .

[15]  Iain Moffatt,et al.  Matroids, delta-matroids and embedded graphs , 2014, J. Comb. Theory, Ser. A.

[16]  Iain Moffatt,et al.  The Las Vergnas polynomial for embedded graphs , 2015, Eur. J. Comb..

[17]  Béla Bollobás,et al.  A Polynomial Invariant of Graphs On Orientable Surfaces , 2001 .

[18]  André Bouchet,et al.  Greedy algorithm and symmetric matroids , 1987, Math. Program..

[19]  Clark Butler A quasi-tree expansion of the Krushkal polynomial , 2018, Adv. Appl. Math..

[20]  H. Crapo,et al.  The Tutte polynomial , 1969, 1707.03459.

[21]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[22]  André Bouchet,et al.  Multimatroids II. Orthogonality, minors and connectivity , 1997, Electron. J. Comb..

[23]  Koko Kalambay Kayibi A decomposition theorem for the linking polynomial of two matroids , 2008, Discret. Math..

[24]  Iain Moffatt,et al.  Hopf algebras and Tutte polynomials , 2015, Adv. Appl. Math..

[25]  Andre Bouchet MAPS AND A-MATROIDS" , 1989 .

[26]  Lorenzo Traldi,et al.  The transition matroid of a 4-regular graph: An introduction , 2013, Eur. J. Comb..

[27]  Suijie Wang Möbius conjugation and convolution formulae , 2015, J. Comb. Theory, Ser. B.

[28]  S. D. Noble,et al.  On the interplay between embedded graphs and delta‐matroids , 2016, Proceedings of the London Mathematical Society.

[29]  Vyacheslav Krushkal,et al.  Graphs, Links, and Duality on Surfaces , 2009, Combinatorics, Probability and Computing.

[30]  Li Jin-q,et al.  Hopf algebras , 2019, Graduate Studies in Mathematics.

[31]  Iain Moffatt Knot invariants and the Bollobás-Riordan polynomial of embedded graphs , 2008, Eur. J. Comb..

[32]  William T. Tutte A Ring in Graph Theory , 1947 .