Matroidal frameworks for topological Tutte polynomials
暂无分享,去创建一个
[1] James G. Oxley,et al. Matroid theory , 1992 .
[2] Iain Moffatt,et al. Graphs on Surfaces - Dualities, Polynomials, and Knots , 2013, Springer Briefs in Mathematics.
[3] Convolution-multiplication identities for Tutte polynomials of graphs and matroids , 2010, J. Comb. Theory, Ser. B.
[4] Joanna A. Ellis-Monaghan,et al. A recipe theorem for the topological Tutte polynomial of Bollobás and Riordan , 2009, Eur. J. Comb..
[5] Spencer Backman,et al. A convolution formula for Tutte polynomials of arithmetic matroids and other combinatorial structures , 2016, 1602.02664.
[6] Béla Bollobás,et al. A polynomial of graphs on surfaces , 2002 .
[7] Victor Reiner,et al. A Convolution Formula for the Tutte Polynomial , 1999, J. Comb. Theory, Ser. B.
[8] André Bouchet,et al. Maps and Delta-matroids , 1989, Discret. Math..
[9] Dominic Welsh,et al. The Tutte polynomial , 1999, Random Struct. Algorithms.
[10] André Bouchet,et al. Representability of △-matroids over GF(2) , 1991 .
[11] Joachim Kock,et al. Incidence Hopf algebras , 2011 .
[12] S. Chmutov,et al. Polynomial invariants of graphs on surfaces , 2010, 1012.5053.
[13] Michel Las Vergnas,et al. External and internal elements of a matroid basis , 1998, Discret. Math..
[14] Michel Las Vergnas,et al. On the Tutte Polynomial of a Morphism of Matroids , 1980 .
[15] Iain Moffatt,et al. Matroids, delta-matroids and embedded graphs , 2014, J. Comb. Theory, Ser. A.
[16] Iain Moffatt,et al. The Las Vergnas polynomial for embedded graphs , 2015, Eur. J. Comb..
[17] Béla Bollobás,et al. A Polynomial Invariant of Graphs On Orientable Surfaces , 2001 .
[18] André Bouchet,et al. Greedy algorithm and symmetric matroids , 1987, Math. Program..
[19] Clark Butler. A quasi-tree expansion of the Krushkal polynomial , 2018, Adv. Appl. Math..
[20] H. Crapo,et al. The Tutte polynomial , 1969, 1707.03459.
[21] Jonathan L. Gross,et al. Topological Graph Theory , 1987, Handbook of Graph Theory.
[22] André Bouchet,et al. Multimatroids II. Orthogonality, minors and connectivity , 1997, Electron. J. Comb..
[23] Koko Kalambay Kayibi. A decomposition theorem for the linking polynomial of two matroids , 2008, Discret. Math..
[24] Iain Moffatt,et al. Hopf algebras and Tutte polynomials , 2015, Adv. Appl. Math..
[25] Andre Bouchet. MAPS AND A-MATROIDS" , 1989 .
[26] Lorenzo Traldi,et al. The transition matroid of a 4-regular graph: An introduction , 2013, Eur. J. Comb..
[27] Suijie Wang. Möbius conjugation and convolution formulae , 2015, J. Comb. Theory, Ser. B.
[28] S. D. Noble,et al. On the interplay between embedded graphs and delta‐matroids , 2016, Proceedings of the London Mathematical Society.
[29] Vyacheslav Krushkal,et al. Graphs, Links, and Duality on Surfaces , 2009, Combinatorics, Probability and Computing.
[30] Li Jin-q,et al. Hopf algebras , 2019, Graduate Studies in Mathematics.
[31] Iain Moffatt. Knot invariants and the Bollobás-Riordan polynomial of embedded graphs , 2008, Eur. J. Comb..
[32] William T. Tutte. A Ring in Graph Theory , 1947 .