Hole transport layer based on conjugated polyelectrolytes for polymer solar cells.

[1]  Yong‐Young Noh,et al.  Purification of PEDOT:PSS by Ultrafiltration for Highly Conductive Transparent Electrode of All‐Printed Organic Devices , 2016, Advanced materials.

[2]  Kwanghee Lee,et al.  Modification of a PEDOT:PSS hole transport layer for printed polymer solar cells , 2016 .

[3]  Christopher J. Tassone,et al.  Structural control of mixed ionic and electronic transport in conducting polymers , 2016, Nature Communications.

[4]  S. Clément,et al.  High-Permittivity Conjugated Polyelectrolyte Interlayers for High-Performance Bulk Heterojunction Organic Solar Cells. , 2016, ACS applied materials & interfaces.

[5]  Dechun Zou,et al.  Flexible fiber/wire-shaped solar cells in progress: properties, materials, and designs , 2015 .

[6]  Tae‐Woo Lee,et al.  Elucidating the Role of Conjugated Polyelectrolyte Interlayers for High-Efficiency Organic Photovoltaics. , 2015, ChemSusChem.

[7]  Jin Young Kim,et al.  Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells , 2015, Nature Communications.

[8]  A. Heeger,et al.  Polymer Homo‐Tandem Solar Cells with Best Efficiency of 11.3% , 2015, Advanced materials.

[9]  Yongye Liang,et al.  Interfacial Layer Engineering for Performance Enhancement in Polymer Solar Cells , 2015 .

[10]  Yongfang Li,et al.  Single‐Junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency , 2015, Advanced materials.

[11]  J. H. Kim,et al.  Effect of polyelectrolyte electron collection layer counteranion on the properties of polymer solar cells. , 2015, ACS applied materials & interfaces.

[12]  A. Heeger,et al.  Solution-processed pH-neutral conjugated polyelectrolyte improves interfacial contact in organic solar cells. , 2015, ACS nano.

[13]  He Yan,et al.  Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells , 2014, Nature Communications.

[14]  P. Lugli,et al.  Enhancing Efficiency of Organic Bulkheterojunction Solar Cells by Using 1,8-Diiodooctane as Processing Additive , 2014, IEEE Journal of Photovoltaics.

[15]  G. Bazan,et al.  Side-chain effects on the conductivity, morphology, and thermoelectric properties of self-doped narrow-band-gap conjugated polyelectrolytes. , 2014, Journal of the American Chemical Society.

[16]  Junbiao Peng,et al.  Improving the stability of bulk heterojunction solar cells by incorporating pH-neutral PEDOT:PSS as the hole transport layer. , 2014, ACS applied materials & interfaces.

[17]  S. Lattante Electron and Hole Transport Layers: Their Use in Inverted Bulk Heterojunction Polymer Solar Cells , 2014 .

[18]  P. Wang,et al.  Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells. , 2014, ACS applied materials & interfaces.

[19]  In Hwan Jung,et al.  Multi‐Charged Conjugated Polyelectrolytes as a Versatile Work Function Modifier for Organic Electronic Devices , 2014 .

[20]  A. Heeger,et al.  Conductive Conjugated Polyelectrolyte as Hole‐Transporting Layer for Organic Bulk Heterojunction Solar Cells , 2014, Advanced materials.

[21]  A. Heeger,et al.  Facile doping of anionic narrow-band-gap conjugated polyelectrolytes during dialysis. , 2013, Angewandte Chemie.

[22]  Teresa L. Chen,et al.  Reducing exciton binding energy by increasing thin film permittivity: an effective approach to enhance exciton separation efficiency in organic solar cells. , 2013, ACS applied materials & interfaces.

[23]  H. Y. Woo,et al.  Conjugated polyelectrolytes: A new class of semiconducting material for organic electronic devices , 2013 .

[24]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[25]  G. Andersson,et al.  Effect of indium and tin contamination on the efficiency and electronic properties of organic bulk hetero-junction solar cells , 2011 .

[26]  S. Falke,et al.  Raman spectroscopic identification of fullerene inclusions in polymer/fullerene blends , 2011 .

[27]  C. Deibel,et al.  Oxygen doping of P3HT:PCBM blends: Influence on trap states, charge carrier mobility and solar cell performance , 2010, 1008.4230.

[28]  Christoph J. Brabec,et al.  High Photovoltaic Performance of a Low‐Bandgap Polymer , 2006 .

[29]  Yingying Fu,et al.  Highly conductive PEDOT:PSS transparent electrode prepared by a post-spin-rinsing method for efficient ITO-free polymer solar cells , 2016 .