An algorithm for prescribed mean curvature using isogeometric methods

We present a Newton type algorithm to find parametric surfaces of prescribed mean curvature with a fixed given boundary. In particular, it applies to the problem of minimal surfaces. The algorithm relies on some global regularity of the spaces where it is posed, which is naturally fitted for discretization with isogeometric type of spaces. We introduce a discretization of the continuous algorithm and present a simple implementation using the recently released isogeometric software library igatools. Finally, we show several numerical experiments which highlight the convergence properties of the scheme.

[1]  Robert Osserman,et al.  Lectures on Minimal Surfaces. , 1991 .

[2]  Einar M. Rønquist,et al.  High order numerical approximation of minimal surfaces , 2011, J. Comput. Phys..

[3]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[4]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[5]  I. Holopainen Riemannian Geometry , 1927, Nature.

[6]  Roger McKnight Shapes of Things , 1975 .

[7]  Shawn W. Walker,et al.  The Shapes of Things - A Practical Guide to Differential Geometry and the Shape Derivative , 2015 .

[8]  J. Plateau,et al.  Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires , 1873 .

[9]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[10]  Charles Vernon Boys,et al.  Soap-bubbles and the forces which mould them. : Being a course of three lectures delivered in the theatre of the London institution on the afternoons of Dec. 30, 1889, Jan. 1 and 3, 1890, before a juvenile audience , 2018 .

[11]  Gerhard Dziuk,et al.  Finite element approximations to surfaces of prescribed variable mean curvature , 2006, Numerische Mathematik.

[12]  Shawn W. Walker,et al.  Droplet Footprint Control , 2015, SIAM J. Control. Optim..

[13]  Numerical computation of constant mean curvature surfaces using finite elements , 2004, gr-qc/0408059.

[14]  Michel C. Delfour Shapes and Geometries , 1987 .

[15]  Gerhard Dziuk,et al.  The discrete plateau problem: Convergence results , 1999, Math. Comput..

[16]  M. Pauletti,et al.  Istituto di Matematica Applicata e Tecnologie Informatiche “ Enrico Magenes ” , 2014 .

[17]  M. C. Delfour,et al.  Shapes and Geometries - Metrics, Analysis, Differential Calculus, and Optimization, Second Edition , 2011, Advances in design and control.

[18]  J.-F. Gerbeau,et al.  Generalized Navier boundary condition and geometric conservation law for surface tension , 2008, 0804.1563.

[19]  J. Haslinger,et al.  2. A Mathematical Introduction to Sizing and Shape Optimization , 2003 .