Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth

The idea that one can possibly develop computational models that predict the emergence, growth, or decline of tumors in living tissue is enormously intriguing as such predictions could revolutionize medicine and bring a new paradigm into the treatment and prevention of a class of the deadliest maladies affecting humankind. But at the heart of this subject is the notion of predictability itself, the ambiguity involved in selecting and implementing effective models, and the acquisition of relevant data, all factors that contribute to the difficulty of predicting such complex events as tumor growth with quantifiable uncertainty. In this work, we attempt to lay out a framework, based on Bayesian probability, for systematically addressing the questions of Validation, the process of investigating the accuracy with which a mathematical model is able to reproduce particular physical events, and Uncertainty quantification, developing measures of the degree of confidence with which a computer model predicts particular quantities of interest. For illustrative purposes, we exercise the process using virtual data for models of tumor growth based on diffuse-interface theories of mixtures utilizing virtual data.

[1]  D. L. Sean McElwain,et al.  A Mixture Theory for the Genesis of Residual Stresses in Growing Tissues I: A General Formulation , 2005, SIAM J. Appl. Math..

[2]  Vittorio Cristini,et al.  Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis. , 2010, Journal of theoretical biology.

[3]  Jeffrey W. Bullard,et al.  Computational and mathematical models of microstructural evolution , 1998 .

[4]  Wing Kam Liu,et al.  Random field finite elements , 1986 .

[5]  Xiangrong Li,et al.  Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching , 2009, Journal of mathematical biology.

[6]  L. Preziosi,et al.  ON THE CLOSURE OF MASS BALANCE MODELS FOR TUMOR GROWTH , 2002 .

[7]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[8]  V. Cristini,et al.  Three-Dimensional Diffuse-Interface Simulation of Multispecies Tumor Growth – II : Investigation of Tumor Invasion , 2006 .

[9]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[10]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[11]  Michael S. Eldred,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .

[12]  Luis A. Caffarelli,et al.  An L∞ bound for solutions of the Cahn-Hilliard equation , 1995 .

[13]  Andrea Hawkins-Daarud,et al.  Toward a predictive model of tumor growth , 2011 .

[14]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[15]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[16]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[17]  Sophia Lefantzi,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. , 2011 .

[18]  D A Lauffenburger,et al.  Mathematical model for the effects of adhesion and mechanics on cell migration speed. , 1991, Biophysical journal.

[19]  森山 昌彦,et al.  「確率有限要素法」(Stochastic Finite Element Method) , 1985 .

[20]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[21]  Karl W. Schulz,et al.  The Parallel C++ Statistical Library 'QUESO': Quantification of Uncertainty for Estimation, Simulation and Optimization , 2011, Euro-Par Workshops.

[22]  J. King,et al.  Mathematical modelling of avascular-tumour growth. , 1997, IMA journal of mathematics applied in medicine and biology.

[23]  Christopher J. Roy,et al.  Verification and Validation in Scientific Computing , 2010 .

[24]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[25]  M. Chaplain,et al.  Continuous and discrete mathematical models of tumor-induced angiogenesis , 1998, Bulletin of mathematical biology.

[26]  L. Preziosi,et al.  Modelling Solid Tumor Growth Using the Theory of Mixtures , 2001, Mathematical medicine and biology : a journal of the IMA.

[27]  Ivo Babuška,et al.  A systematic approach to model validation based on Bayesian updates and prediction related rejection criteria , 2008 .

[28]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[29]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[30]  Omar Ghattas,et al.  From SIAM News , Volume 43 , Number 10 , December 2010 Computer Predictions with Quantified Uncertainty , Part II , 2010 .

[31]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[32]  Helen M. Byrne,et al.  The role of growth factors in avascular tumour growth , 1997 .

[33]  Humberto Contreras,et al.  The stochastic finite-element method , 1980 .

[34]  Hugh W. Coleman,et al.  Experimentation, Validation, and Uncertainty Analysis for Engineers , 2009 .

[35]  D. Ambrosi,et al.  On the mechanics of a growing tumor , 2002 .

[36]  J. Tinsley Oden,et al.  GENERAL DIFFUSE-INTERFACE THEORIES AND AN APPROACH TO PREDICTIVE TUMOR GROWTH MODELING , 2010 .

[37]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[38]  P Ciarletta,et al.  Contour instabilities in early tumor growth models. , 2011, Physical review letters.

[39]  Michael S. Eldred,et al.  DAKOTA , A Multilevel Parallel Object-Oriented Framework for Design Optimization , Parameter Estimation , Uncertainty Quantification , and Sensitivity Analysis Version 4 . 0 User ’ s Manual , 2006 .

[40]  Wei-Liem Loh On Latin hypercube sampling , 1996 .

[41]  Jerry Nedelman,et al.  Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..

[42]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[43]  S. M. Wise,et al.  Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations , 2010, J. Sci. Comput..

[44]  C. M. Elliott,et al.  On the Cahn-Hilliard equation with degenerate mobility , 1996 .

[45]  M. Chaplain,et al.  Modelling the growth of solid tumours and incorporating a method for their classification using nonlinear elasticity theory , 1993, Journal of mathematical biology.

[46]  Charles M. Elliott,et al.  The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .

[47]  José Francisco Rodrigues,et al.  Mathematical Models for Phase Change Problems , 1989 .

[48]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[49]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .