Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth
暂无分享,去创建一个
J. Tinsley Oden | Serge Prudhomme | Kristoffer G. van der Zee | Andrea Hawkins-Daarud | Kristoffer G. Zee | J. Oden | A. Hawkins-Daarud | S. Prudhomme | Kristoffer G. Zee | J. Oden
[1] D. L. Sean McElwain,et al. A Mixture Theory for the Genesis of Residual Stresses in Growing Tissues I: A General Formulation , 2005, SIAM J. Appl. Math..
[2] Vittorio Cristini,et al. Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis. , 2010, Journal of theoretical biology.
[3] Jeffrey W. Bullard,et al. Computational and mathematical models of microstructural evolution , 1998 .
[4] Wing Kam Liu,et al. Random field finite elements , 1986 .
[5] Xiangrong Li,et al. Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching , 2009, Journal of mathematical biology.
[6] L. Preziosi,et al. ON THE CLOSURE OF MASS BALANCE MODELS FOR TUMOR GROWTH , 2002 .
[7] Huaiyu Zhu. On Information and Sufficiency , 1997 .
[8] V. Cristini,et al. Three-Dimensional Diffuse-Interface Simulation of Multispecies Tumor Growth – II : Investigation of Tumor Invasion , 2006 .
[9] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[10] A. Brix. Bayesian Data Analysis, 2nd edn , 2005 .
[11] Michael S. Eldred,et al. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .
[12] Luis A. Caffarelli,et al. An L∞ bound for solutions of the Cahn-Hilliard equation , 1995 .
[13] Andrea Hawkins-Daarud,et al. Toward a predictive model of tumor growth , 2011 .
[14] Bradley P. Carlin,et al. Bayesian measures of model complexity and fit , 2002 .
[15] Cheng Wang,et al. An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..
[16] H. Frieboes,et al. Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.
[17] Sophia Lefantzi,et al. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. , 2011 .
[18] D A Lauffenburger,et al. Mathematical model for the effects of adhesion and mechanics on cell migration speed. , 1991, Biophysical journal.
[19] 森山 昌彦,et al. 「確率有限要素法」(Stochastic Finite Element Method) , 1985 .
[20] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[21] Karl W. Schulz,et al. The Parallel C++ Statistical Library 'QUESO': Quantification of Uncertainty for Estimation, Simulation and Optimization , 2011, Euro-Par Workshops.
[22] J. King,et al. Mathematical modelling of avascular-tumour growth. , 1997, IMA journal of mathematics applied in medicine and biology.
[23] Christopher J. Roy,et al. Verification and Validation in Scientific Computing , 2010 .
[24] BabuskaIvo,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .
[25] M. Chaplain,et al. Continuous and discrete mathematical models of tumor-induced angiogenesis , 1998, Bulletin of mathematical biology.
[26] L. Preziosi,et al. Modelling Solid Tumor Growth Using the Theory of Mixtures , 2001, Mathematical medicine and biology : a journal of the IMA.
[27] Ivo Babuška,et al. A systematic approach to model validation based on Bayesian updates and prediction related rejection criteria , 2008 .
[28] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[29] D. J. Eyre. Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .
[30] Omar Ghattas,et al. From SIAM News , Volume 43 , Number 10 , December 2010 Computer Predictions with Quantified Uncertainty , Part II , 2010 .
[31] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[32] Helen M. Byrne,et al. The role of growth factors in avascular tumour growth , 1997 .
[33] Humberto Contreras,et al. The stochastic finite-element method , 1980 .
[34] Hugh W. Coleman,et al. Experimentation, Validation, and Uncertainty Analysis for Engineers , 2009 .
[35] D. Ambrosi,et al. On the mechanics of a growing tumor , 2002 .
[36] J. Tinsley Oden,et al. GENERAL DIFFUSE-INTERFACE THEORIES AND AN APPROACH TO PREDICTIVE TUMOR GROWTH MODELING , 2010 .
[37] R. A. Leibler,et al. On Information and Sufficiency , 1951 .
[38] P Ciarletta,et al. Contour instabilities in early tumor growth models. , 2011, Physical review letters.
[39] Michael S. Eldred,et al. DAKOTA , A Multilevel Parallel Object-Oriented Framework for Design Optimization , Parameter Estimation , Uncertainty Quantification , and Sensitivity Analysis Version 4 . 0 User ’ s Manual , 2006 .
[40] Wei-Liem Loh. On Latin hypercube sampling , 1996 .
[41] Jerry Nedelman,et al. Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..
[42] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[43] S. M. Wise,et al. Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations , 2010, J. Sci. Comput..
[44] C. M. Elliott,et al. On the Cahn-Hilliard equation with degenerate mobility , 1996 .
[45] M. Chaplain,et al. Modelling the growth of solid tumours and incorporating a method for their classification using nonlinear elasticity theory , 1993, Journal of mathematical biology.
[46] Charles M. Elliott,et al. The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .
[47] José Francisco Rodrigues,et al. Mathematical Models for Phase Change Problems , 1989 .
[48] Walter Noll,et al. The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .
[49] E. Somersalo,et al. Statistical and computational inverse problems , 2004 .