Cosmogenic 11C production and sentivity of organic scintillator detectors to pep and CNO neutrinos

Several possible background sources determine the detectability of pep and CNO solar neutrinos in organic liquid scintillator detectors. Among such sources, the cosmogenic {sup 11}C nuclide plays a central role. {sup 11}C is produced underground in reactions induced by the residual cosmic muon flux. Experimental data available for the effective cross section for {sup 11}C by muons indicate that {sup 11}C will be the dominant source of background for the observation of pep and CNO neutrinos. {sup 11}C decays are expected to total a rate 2.5 (20) times higher than the combined rate of pep and CNO neutrinos in Borexino (KamLAND) in the energy window preferred for the pep measurement between 0.8 and 1.3 MeV. This study examines the production mechanism of {sup 11}C by muon-induced showers in organic liquid scintillators with a novel approach: for the first time, we perform a detailed ab initio calculation of the production of a cosmogenic nuclide, {sup 11}C, taking into consideration all relevant production channels. Results of the calculation are compared with the effective cross sections measured by target experiments in muon beams. This article also discusses a technique for reduction of background from {sup 11}C in organic liquid scintillator detectors, which allowsmore » to identify on a one-by-one basis and remove from the data set a large fraction of {sup 11}C decays. The background reduction technique hinges on an idea proposed by Martin Deutsch, who suggested that a neutron must be ejected in every interaction producing a {sup 11}C nuclide from {sup 12}C. {sup 11}C events are tagged by a threefold coincidence with the parent muon track and the subsequent neutron capture on protons.« less

[1]  M. Chen The SNO Liquid Scintillator Project , 2005 .

[2]  M. Pinsonneault,et al.  What do we (not) know theoretically about solar neutrino fluxes? , 2004, Physical review letters.

[3]  J. Bahcall,et al.  A road map to solar neutrino fluxes, neutrino oscillation parameters, and tests for new physics , 2003, hep-ph/0305159.

[4]  J. Shirai Start of KamLAND , 2003 .

[5]  V. Kudryavtsev,et al.  Simulations of muon-induced neutron flux at large depths underground , 2003, hep-ex/0303007.

[6]  S Hatakeyama,et al.  First results from KamLAND: evidence for reactor antineutrino disappearance. , 2003, Physical review letters.

[7]  E. al.,et al.  Measurement of the Solar Neutrino Capture Rate by the Russian-American Gallium Solar Neutrino Experiment During One Half of the 22-Year Cycle of Solar Activity , 2002, astro-ph/0204245.

[8]  E. al.,et al.  Measurements of extremely low radioactivity levels in BOREXINO , 2001, hep-ex/0109031.

[9]  J. N. Abdurashitov,et al.  Solar neutrino flux measurements by the Soviet-American gallium experiment (SAGE) for half the 22-year solar cycle , 2002 .

[10]  Stephanie C. Frankle,et al.  PROMPT GAMMA RAYS FROM RADIATIVE CAPTURE OF THERMAL NEUTRONS BY ELEMENTS FROM HYDROGEN THROUGH ZINC , 2002 .

[11]  R. C. Allen,et al.  Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. , 2002, Physical review letters.

[12]  D. Groom,et al.  MUON STOPPING POWER AND RANGE TABLES 10 MeV–100 TeV , 2001 .

[13]  S. Kim,et al.  Solar 8B and hep neutrino measurements from 1258 days of Super-Kamiokande data. , 2001, Physical review letters.

[14]  A. Fasso,et al.  Predicting neutron production from cosmic ray muons , 2001, hep-ex/0101049.

[15]  A. Ferrari,et al.  Electron-Photon Transport in FLUKA: Status , 2001 .

[16]  L. Cadonati The Borexino solar neutrino experiment and its scintillator containment vessel , 2001 .

[17]  Through-Going Muons in the Sudbury Neutrino Observatory , 2001 .

[18]  E. al.,et al.  Science and technology of BOREXINO: A Real time detector for low-energy solar neutrinos , 2000, hep-ex/0012030.

[19]  L. Oberauer,et al.  Muon-induced production of radioactive isotopes in scintillation detectors , 2000 .

[20]  W. Hampel,et al.  GNO solar neutrino observations: results for GNO I , 2000, hep-ex/0006034.

[21]  Lvd Collaboration Measurement of the Neutron Flux Produced by Cosmic-Ray Muons with LVD at Gran Sasso , 1999, hep-ex/9905047.

[22]  L. Bland,et al.  Quasifree inclusive and exclusive cross sections at 200 MeV , 1999 .

[23]  G. Bruni,et al.  Measurement of the neutron flux produced by cosmic ray muons with LVD at Gran Sasso , 1999 .

[24]  N. Nakao,et al.  Measurements of neutron spallation cross sections of 12C and 209Bi in the 20- to 150-MeV energy range , 1998 .

[25]  C. K. Lee,et al.  Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector , 1998 .

[26]  N. Darnton,et al.  Ultra-low background measurements in a large volume underground detector , 1998 .

[27]  D. Vignaud,et al.  The muon induced background in the GALLEX experiment , 1997 .

[28]  L. Gosset,et al.  GALLEX solar neutrino observations: Results for GALLEX IV , 1996 .

[29]  Y. Uwamino,et al.  Measurement of the Neutron Activation Cross Sections of 12C, 30Si, 47Ti, 48Ti, 52Cr, 59Co, and 58Ni Between 15 and 40 MeV , 1996 .

[30]  Vogel,et al.  Pion and neutron production by cosmic-ray muons underground. , 1995, Physical review. C, Nuclear physics.

[31]  Crawford,et al.  High resolution measurements of 12C( gamma,n) and the implications for the ( gamma,N) reaction mechanism at intermediate energy. , 1993, Physical review letters.

[32]  R. Fergerson,et al.  Inclusive quasielastic spin observables for p+2H, 12C at 500 Me V☆ , 1991 .

[33]  Inoue,et al.  Real-time, directional measurement of 8B solar neutrinos in the Kamiokande II detector. , 1991, Physical review. D, Particles and fields.

[34]  O'Connell,et al.  Muon-induced radioactivity in underground detectors. , 1988, Physical review. D, Particles and fields.

[35]  G. Pauletta,et al.  (p,d) reaction at 800 MeV , 1984 .

[36]  R. Eisenstein,et al.  (π+,p) and (π+,d) reactions on light nuclei , 1982 .

[37]  W. Scobel,et al.  Excitation functions of nuclear reactions producing11C , 1981 .

[38]  P. Dimbylow Neutron cross-sections and kerma values for carbon, nitrogen and oxygen from 20 to 50 MeV. , 1980, Physics in medicine and biology.

[39]  K. Koyama,et al.  Forbidden (p, d) Transition and Their CCBA Analysis , 1980 .

[40]  H. Plendl,et al.  Evidence for the quasifree character of the ( π ± , π N ) reactions on C 12 , Mg 24 , and Ca 40 , 1979 .

[41]  Lincoln Wolfenstein,et al.  Neutrino Oscillations in Matter , 1978 .

[42]  R. Eisenstein,et al.  Comparison of the reactions /sup 12/C(. pi. /sup +/,p)/sup 11/C and /sup 12/C(p, d) /sup 11/C near the same momentum transfer , 1978 .

[43]  G. Kuhl,et al.  A comparison of absolute cross sections for electro- and photo-induced reactions , 1977 .

[44]  R. Riddle,et al.  The (p, d) reaction at 65 MeV , 1975 .

[45]  I. C. Nascimento,et al.  Nuclear excitation by electrons and positrons , 1975 .

[46]  O. Gonçalves,et al.  An analysis of electrodisintegration of nuclei using E1 virtual radiation spectra evaluated with coulomb distorted waves , 1975 .

[47]  O. Gonçalves,et al.  Disintegration ofC12,F19,Cl35,Cu63, andCu65by real and virtual radiation , 1975 .

[48]  R. Silbar,et al.  Effects of nucleon charge exchange on the ($pi$,$pi$N) puzzle , 1975 .

[49]  R. A. Williams,et al.  Excitation Functions for the Reactions ^{12}C(π^{±}, πN)^{11}C over the Region of the (3,3) Resonance , 1975 .

[50]  S. Pearlstein EVALUATED NUCLEAR DATA FILES , 1975 .

[51]  B. Schoch,et al.  Investigation of the 16O(γ, n)15O and 12C(γ, n)11C reaction at photon energies between 150 MeV and 63 MeV , 1974 .

[52]  B. L. Berman,et al.  Atlas of photoneutron cross sections obtained with monoenergetic photons. Second edition , 1974 .

[53]  G. C. Phillips,et al.  Measurements of 12C(π+, πN)11C and 19F(π+, πN)18F cross sections near the 32, 32 resonance , 1973 .

[54]  G. Kuhl,et al.  Electrodisintegration of 12C, 63Cu and 107Ag by electrons and positrons , 1972 .

[55]  G. W. Butler,et al.  $sup 12$C(p,pn)$sup 11$C CROSS SECTION AT 7.6 GeV. , 1972 .

[56]  D. Onley,et al.  Real and Virtual Radiation in Electron-Nucleus Scattering , 1971 .

[57]  N. Tanner,et al.  Pion reactions with light nuclei at the 3-3 resonance , 1969 .

[58]  G. Goth,et al.  OBSERVATION OF THE LOWEST p-SHELL T=3/2 STATES OF 11B AND 11C , 1968 .

[59]  G. Goth,et al.  OBSERVATION OF THE LOWEST p-SHELL T = 3/2 STATES OF $sup 11$B AND $sup 11$C. , 1968 .

[60]  N. Glendenning,et al.  INADEQUACY OF THE SIMPLE DISTORTED-WAVE BORN-APPROXIMATION TREATMENT OF COMPARATIVE (p,t) AND (p,$sup 3$He) TRANSITIONS. , 1968 .

[61]  F. Nasyrov Cross-sections for (n, 2n), (n, p), and (n, α) reactions averaged over the neutron fission spectrum , 1968 .

[62]  W. Stephens,et al.  $sup 12$C($gamma$,N)$sup 11$C GIANT RESONANCE WITH GAMMA RAYS , 1966 .

[63]  V. Verbinski,et al.  Photoneutron spectra and cross sections for 12C and 16O , 1965 .

[64]  R. B. Walton,et al.  Electrodisintegration of Nuclei by Positrons and Electrons , 1965 .

[65]  Marc Lefort,et al.  Émission d'hélions dans les réactions de spallation , 1962 .

[66]  W. Stephens,et al.  PHOTONUCLEAR ACTIVATION BY 20.5-Mev GAMMA RAYS , 1962 .

[67]  J. P. Roalsvig,et al.  PHOTONEUTRON REACTIONS IN G12 AND O16 , 1961 .

[68]  J. Kluyver,et al.  The C12(p, pn)C11 and Al27(p, 3pn)Na24 cross-sections at 591 MeV , 1961 .

[69]  V. Parikh Absolute cross-sections of C12(p,pn)C11 from 288 to 383 MeV , 1960 .

[70]  W. Barber,et al.  Electrodisintegration of Ta and Au nuclei , 1960 .

[71]  N. Horwitz,et al.  C$sup 12$(p,pn)C$sup 11$ CROSS SECTION FROM 3 TO 6 Bev , 1960 .

[72]  P. Benioff NUCLEAR REACTIONS OF LOW-Z ELEMENTS WITH 5.7-BEV PROTONS NUCLEAR STRUCTURE AND SIMPLE NUCLEAR REACTIONS (thesis) , 1959 .

[73]  W. Stephens,et al.  Gamma-Ray Activation of Carbon , 1959 .

[74]  W. Barber ELECTRODISINTEGRATION OF Be$sup 9$ AND C$sup 1$$sup 2$ , 1958 .

[75]  J. Cumming,et al.  C$sup 12$(p,pn)C$sup 11$ CROSS SECTION AT 2 AND 3 Bev , 1958 .

[76]  D. Yennie,et al.  Pion production in electron-proton collisions , 1957 .

[77]  P. A. Egelstaff,et al.  Neutron Cross-Sections , 1956, Nature.

[78]  J. E. Brolley,et al.  (n,2n) REACTIONS IN C$sup 12$, Cu$sup 63$, AND Mo$sup 9$$sup 2$ , 1952 .

[79]  A. Cameron,et al.  THE SOLUTION OF X-RAY ACTIVATION CURVES FOR PHOTONUCLEAR CROSS SECTIONS , 1951 .

[80]  Edward Teller,et al.  On nuclear dipole vibrations , 1948 .

[81]  C. Weizsäcker Ausstrahlung bei Stößen sehr schneller Elektronen , 1934 .