Interaction between 6-hydroxydopamine and transferrin: "Let my iron go".

The dopamine analogue 6-hydroxydopamine (6-OHDA) is selectively toxic to catecholaminergic neurons. Because of its selectivity for neuroblastic cells in the sympathetic nervous system lineage, 6-OHDA has been suggested as a chemotherapeutic agent for targeted treatment of patients with neuroblastoma. We tested the hypothesis that the toxicity of 6-OHDA is caused by its interaction with serum ferric transferrin (Fe-TF) resulting in release of iron. We further hypothesized that this iron, through its redox-cycling by 6-OHDA, triggers generation of reactive oxygen species. 6-OHDA-induced release of iron from Fe-TF was demonstrated by: (1) low-temperature EPR spectroscopic evidence for decay of the characteristic Fe-TF signal (g = 4.3) and appearance of the high-spin signal from iron chelated by 6-OHDA oxidation products; (2) spectrophotometric detection of complexing of iron with the Fe(2+) chelator ferrozine; (3) redox-cycling of ascorbate yielding EPR-detectable ascorbate radicals; and (4) generation of hydroxyl radicals as evidenced by EPR spectroscopy of their adduct with a spin trap, 5, 5'-dimethylpyrroline oxide (DMPO) (DMPO-OH). Our low-temperature EPR studies showed that in human plasma, 6-OHDA caused iron release only under nitrogen gas but not under air or oxygen. The absence of a 6-OHDA effect in plasma under aerobic conditions was most likely due to its ferroxidase activity [with consequent reuptake of Fe(III) by apoTF] and catalytic oxidation of 6-OHDA by ceruloplasmin. Modeling of these plasma activities by a stable nitroxide radical, 2,2,6, 6-tetramethyl-1-piperidinyloxy (TEMPOL), resulted in protection of plasma Fe-TF against iron release under nitrogen. Parenteral administration of 6-OHDA to mice resulted in iron release from Fe-TF as evidenced by transformation of the Fe-TF low-temperature EPR signal that was indistinguishable from that seen in in vitro models. In addition, administration of the iron chelator deferoxamine (DFO) to mice prior to administration of toxic doses of 6-OHDA resulted in a decrease in activity impairment of mice as compared to that seen with 6-OHDA alone. These findings underscore the physiological and pharmacological relevance of 6-OHDA-mediated iron release from Fe-TF and suggest that iron chelators (DFO) may be used for prevention of 6-OHDA toxicity.