Flat Surfaces
暂无分享,去创建一个
[1] The theta characteristic of a branched covering , 2003, math/0312186.
[2] G. Forni. Chapter 8 - On the Lyapunov Exponents of the Kontsevich–Zorich Cocycle , 2006 .
[3] Pascal Hubert,et al. Problems on billiards, flat surfaces and translation surfaces , 2006 .
[4] Steven P. Kerckhoff,et al. Ergodicity of billiard flows and quadratic differentials , 1986 .
[5] L. Barreira,et al. Lyapunov Exponents and Smooth Ergodic Theory , 2002 .
[6] H. Masur,et al. Billiards in rectangles with barriers , 2001, math/0107204.
[7] On triangular billiards , 2001 .
[8] Thomas A. Schmidt,et al. Veech groups and polygonal coverings , 2000 .
[9] J. Milnor. Remarks Concerning Spin Manifolds , 1965 .
[10] Martin Moeller. Teichmueller curves, Galois actions and GT-relations , 2003, math/0311308.
[11] Stefano Marmi,et al. Hölder Regularity of the Solutions of the Cohomological Equation for Roth Type Interval Exchange Maps , 2004, 1407.1776.
[12] Michael Atiyah,et al. Riemann surfaces and spin structures , 1971 .
[13] W. Veech. Gauss measures for transformations on the space of interval exchange maps , 1982 .
[14] W. Veech. Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards , 1989 .
[15] C. McMullen. Teichmüller curves in genus two: Torsion divisors and ratios of sines , 2006 .
[16] Anton Zorich,et al. Connected components of the moduli spaces of Abelian differentials with prescribed singularities , 2002 .
[17] Xoyo-L. CLOSURES OF TOTALLY GEODESIC IMMERSIONS IN MANIFOLDS OF CONSTANT NEGATIVE CURVATURE , 2007 .
[18] C. McMullen. Teichmüller geodesics of infinite complexity , 2003 .
[19] Noncongruence subgroups in H(2) , 2004, math/0410595.
[20] Anton Zorich,et al. Finite Gauss measure on the space of interval exchange transformations , 1996 .
[21] E. Gutkin,et al. Affine mappings of translation surfaces: geometry and arithmetic , 2000 .
[22] Thomas A. Schmidt,et al. INFINITELY GENERATED VEECH GROUPS , 2004 .
[23] C. McMullen. Teichmüller curves in genus two: Discriminant and spin , 2005 .
[24] W. Veech. THE METRIC THEORY OF INTERVAL EXCHANGE TRANSFORMATIONS II. APPROXIMATION BY PRIMITIVE INTERVAL EXCHANGES , 1984 .
[25] Closures of totally geodesic immersions into locally symmetric spaces of noncompact type , 1999 .
[26] H. Herzel. Chaotic Evolution and Strange Attractors , 1991 .
[27] S.P.Novikov,et al. Topological Phenomena in Normal Metals , 1997, cond-mat/9709007.
[28] John D. Fay. Theta Functions on Riemann Surfaces , 1973 .
[29] H. Masur. The extension of the Weil-Petersson metric to the boundary of Teichmuller space , 1976 .
[30] V. Arnold. SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS , 1963 .
[31] Martin Möller. Periodic points on Veech surfaces and the Mordell-Weil group over a Teichmüller curve , 2004, math/0410262.
[32] C. McMullen. Dynamics of SL 2 ( R ) over moduli space in genus two , 2003 .
[33] Anton Zorich,et al. Moduli spaces of Abelian differentials: The principal boundary, counting problems, and the Siegel–Veech constants , 2002 .
[34] Marcelo Viana,et al. Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture , 2005, math/0508508.
[35] D. Mumford. Theta characteristics of an algebraic curve , 1971 .
[36] S. Kerckhoff. The asymptotic geometry of teichmuller space , 1980 .
[37] Richard Kenyon,et al. Billiards on rational-angled triangles , 2000 .
[38] A. Haefliger,et al. Group theory from a geometrical viewpoint , 1991 .
[39] A. Zorich. Square Tiled Surfaces and Teichmüller Volumes of the Moduli Spaces of Abelian Differentials , 2002 .
[40] M. Keane,et al. Non-ergodic interval exchange transformations , 1977 .
[41] Dennis Johnson. Spin Structures and Quadratic forms on Surfaces , 1980 .
[42] Jean-Christophe Yoccoz,et al. Continued Fraction Algorithms for Interval Exchange Maps: an Introduction ? , 2003 .
[43] Thomas A. Schmidt,et al. Invariants of translation surfaces , 2001 .
[44] Martin Moeller. Variations of Hodge structures of a Teichmüller curve , 2004, math/0401290.
[45] Serge Tabachnikov,et al. Rational billiards and flat structures , 2002 .
[46] Mark Pollicott,et al. Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds , 1993 .
[47] H. Masur,et al. Asymptotic formulas on flat surfaces , 2001, Ergodic Theory and Dynamical Systems.
[48] H. Masur. Closed trajectories for quadratic differentials with an application to billiards , 1986 .
[49] Geometry of infinitely generated Veech groups , 2004, math/0410132.
[50] Giovanni Forni. Deviation of ergodic averages for area-preserving flows on surfaces of higher genus , 2002 .
[51] A. N. Zemlyakov,et al. Topological transitivity of billiards in polygons , 1975 .
[52] P. Levy,et al. Sur le développement en fraction continue d'un nombre choisi au hasard , 1936 .
[53] Multiple Saddle Connections on Flat Surfaces and Principal Boundary of the Moduli Spaces of Quadrati , 2004 .
[54] Gérard Rauzy,et al. Échanges d'intervalles et transformations induites , 1979 .
[55] S. Kerckhoff. Simplicial systems for interval exchange maps and measured foliations , 1985, Ergodic Theory and Dynamical Systems.
[56] W. Veech. THE METRIC THEORY OF INTERVAL EXCHANGE TRANSFORMATIONS I. GENERIC SPECTRAL PROPERTIES , 1984 .
[57] H. Masur. Interval Exchange Transformations and Measured Foliations , 1982 .
[58] C. McMullen. Billiards and Teichmüller curves on Hilbert modular surfaces , 2003 .
[59] I. Dynnikov. Surfaces in 3-Torus: Geometry of Plane Sections , 1998 .
[60] Anton Zorich,et al. Deviation for interval exchange transformations , 1997, Ergodic Theory and Dynamical Systems.
[61] S. Novikov. The Hamiltonian formalism and a many-valued analogue of Morse theory , 1982 .
[62] Artur Avila,et al. Weak mixing for interval exchange transformations and translation flows , 2004 .
[63] C. McMullen. Teichmüller curves in genus two: The decagon and beyond , 2005 .
[64] Prime arithmetic Teichmuller discs in H(2) , 2004 .
[65] D. Rudolph,et al. Topological weak-mixing of interval exchange maps , 1997, Ergodic Theory and Dynamical Systems.
[66] M. Boshernitzan. A condition for minimal interval exchange maps to be uniquely ergodic , 1985 .
[67] Yaroslav Vorobets. Planar structures and billiards in rational polygons: the Veech alternative , 1996 .
[68] A. Eskin,et al. Unipotent flows on the space of branched covers of Veech surfaces , 2004, Ergodic Theory and Dynamical Systems.
[69] Gabriela Schmithüsen,et al. An Algorithm for Finding the Veech Group of an Origami , 2004, Exp. Math..
[70] AN ALGORITHM FOR FINDING THE VEECH GROUP OF AN ORIGAMI , 2004 .
[71] C. McMullen. Prym Varieties and Teichmüller Curves , 2006 .
[72] H. Masur. The growth rate of trajectories of a quadratic differential , 1990, Ergodic Theory and Dynamical Systems.
[73] H. Masur. Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential , 1988 .
[74] L. Bers. Finite dimensional Teichmüller spaces and generalizations , 1981 .
[75] A. Katok. Interval exchange transformations and some special flows are not mixing , 1980 .