Robust Multiple Manifold Structure Learning

We present a robust multiple manifolds structure learning (RMMSL) scheme to robustly estimate data structures under the multiple low intrinsic dimensional manifolds assumption. In the local learning stage, RMMSL efficiently estimates local tangent space by weighted low-rank matrix factorization. In the global learning stage, we propose a robust manifold clustering method based on local structure learning results. The proposed clustering method is designed to get the flattest manifolds clusters by introducing a novel curved-level similarity function. Our approach is evaluated and compared to state-of-theart methods on synthetic data, handwritten digit images, human motion capture data and motorbike videos. We demonstrate the effectiveness of the proposed approach, which yields higher clustering accuracy, and produces promising results for challenging tasks of human motion segmentation and motion flow learning from videos.

[1]  René Vidal,et al.  Segmenting Motions of Different Types by Unsupervised Manifold Clustering , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[3]  S. Shankar Sastry,et al.  Generalized principal component analysis (GPCA) , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Y. Jiang,et al.  Spectral Clustering on Multiple Manifolds , 2011, IEEE Transactions on Neural Networks.

[5]  Laurens van der Maaten,et al.  Learning a Parametric Embedding by Preserving Local Structure , 2009, AISTATS.

[6]  Yee Whye Teh,et al.  Automatic Alignment of Local Representations , 2002, NIPS.

[7]  David J. Fleet,et al.  Topologically-constrained latent variable models , 2008, ICML '08.

[8]  Hongyuan Zha,et al.  Convergence and Rate of Convergence of a Manifold-Based Dimension Reduction Algorithm , 2008, NIPS.

[9]  Gérard G. Medioni,et al.  Dimensionality Estimation, Manifold Learning and Function Approximation using Tensor Voting , 2010, J. Mach. Learn. Res..

[10]  W. Eric L. Grimson,et al.  Construction of Dependent Dirichlet Processes based on Poisson Processes , 2010, NIPS.

[11]  Matthias Hein,et al.  Manifold Denoising , 2006, NIPS.

[12]  Hal Daumé,et al.  Learning Multiple Tasks using Manifold Regularization , 2010, NIPS.

[13]  W. Eric L. Grimson,et al.  Modeling and estimating persistent motion with geometric flows , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  Bernhard Schölkopf,et al.  Ranking on Data Manifolds , 2003, NIPS.

[15]  U. V. Luxburg,et al.  Getting lost in space: large sample analysis of the commute distance , 2010, NIPS 2010.

[16]  Ulrike von Luxburg,et al.  Influence of graph construction on graph-based clustering measures , 2008, NIPS.

[17]  Ehsan Elhamifar,et al.  Sparse subspace clustering , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Robert D. Nowak,et al.  Unlabeled data: Now it helps, now it doesn't , 2008, NIPS.

[19]  Mikhail Belkin,et al.  Semi-Supervised Learning Using Sparse Eigenfunction Bases , 2009, AAAI Fall Symposium: Manifold Learning and Its Applications.

[20]  Marc Pollefeys,et al.  A General Framework for Motion Segmentation: Independent, Articulated, Rigid, Non-rigid, Degenerate and Non-degenerate , 2006, ECCV.

[21]  Florian Steinke,et al.  Non-parametric Regression Between Manifolds , 2008, NIPS.

[22]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[23]  Neil D. Lawrence,et al.  Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..

[24]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[25]  Michael J. Black,et al.  A Framework for Robust Subspace Learning , 2003, International Journal of Computer Vision.

[26]  Robert Pless,et al.  Manifold clustering , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[27]  Ulrike von Luxburg,et al.  From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians , 2005, COLT.

[28]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.