Nash equilibria of threshold type for two-player nonzero-sum games of stopping

This paper analyses two-player nonzero-sum games of optimal stopping on a class of linear regular diffusions with not non-singular boundary behaviour (in the sense of It\^o and McKean (1974), p.\ 108). We provide sufficient conditions under which Nash equilibria are realised by each player stopping the diffusion at one of the two boundary points of an interval. The boundaries of this interval solve a system of algebraic equations. We also provide conditions sufficient for the uniqueness of the equilibrium in this class.

[1]  John Moriarty,et al.  Real Option Valuation for Reserve Capacity , 2016, Eur. J. Oper. Res..

[2]  Huyen Pham,et al.  Continuous-time stochastic control and optimization with financial applications / Huyen Pham , 2009 .

[3]  Avner Friedman,et al.  Nonzero-sum stochastic differential games with stopping times and free boundary problems , 1977 .

[4]  Frank Riedel,et al.  Subgame-Perfect Equilibria in Stochastic Timing Games , 2014, 1409.4597.

[5]  D. Fudenberg,et al.  Preemption and Rent Equalization in the Adoption of New Technology , 1985 .

[6]  Yoshio Ohtsubo On a discrete-time non-zero-sum Dynkin problem with monotonicity , 1991 .

[7]  Luis H. R. Alvarez,et al.  A Class of Solvable Stopping Games , 2008 .

[8]  Savas Dayanik,et al.  On the optimal stopping problem for one-dimensional diffusions , 2003 .

[9]  Erik Ekstrom,et al.  On the value of optimal stopping games , 2006 .

[10]  Yoshio Ohtsubo,et al.  A Nonzero-Sum Extension of Dynkin's Stopping Problem , 1987, Math. Oper. Res..

[11]  Xin Li,et al.  Optimal Mean Reversion Trading with Transaction Costs and Stop-Loss Exit , 2014, 1411.5062.

[12]  John W. Mamer Monotone stopping games , 1987 .

[13]  J. Moriarty,et al.  American Call Options for Power System Balancing , 2014 .

[14]  A. Friedman Foundations of modern analysis , 1970 .

[15]  C. SIAMJ. CONTINUOUS-TIME DYNKIN GAMES WITH MIXED STRATEGIES , 2002 .

[16]  M. Yor,et al.  Mathematical Methods for Financial Markets , 2009 .

[17]  Savas Dayanik,et al.  Optimal Stopping of Linear Diffusions with Random Discounting , 2008, Math. Oper. Res..

[18]  H. McKean,et al.  Diffusion processes and their sample paths , 1996 .

[19]  Hiroaki Morimoto,et al.  Non-zero-sum discrete parameter stochastic games with stopping times , 1986 .

[20]  Daniel Friedman,et al.  Preemption Games: Theory and Experiment , 2010 .

[21]  Pauli Murto,et al.  Exit in duopoly under uncertainty , 2004 .

[22]  E. B. Dynkin,et al.  Game variant of a problem on optimal stopping , 1969 .

[23]  Ioannis Karatzas,et al.  BSDE Approach to Non-Zero-Sum Stochastic Differential Games of Control and Stopping ∗ , 2011 .

[24]  Eilon Solan,et al.  Two-player nonZero–sum stopping games in discrete time , 2004, math/0410173.

[25]  G. Ferrari,et al.  A Stochastic Reversible Investment Problem on a Finite-Time Horizon: Free Boundary Analysis , 2013 .

[26]  E. B. Dynkin,et al.  Markov processes; theorems and problems , 2013 .

[27]  Andreas E. Kyprianou,et al.  Some calculations for Israeli options , 2004, Finance Stochastics.

[28]  Hideo Nagai,et al.  Non zero-sum stopping games of symmetric Markov processes , 1987 .

[29]  Yuri Kifer,et al.  Game options , 2000, Finance Stochastics.

[30]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[31]  Jianfeng Zhang,et al.  The Continuous Time Nonzero-Sum Dynkin Game Problem and Application in Game Options , 2008, SIAM J. Control. Optim..

[32]  Jakša Cvitanić,et al.  Backward stochastic differential equations with reflection and Dynkin games , 1996 .

[33]  Eilon Solan,et al.  Equilibrium in two-player non-zero-sum Dynkin games in continuous time , 2010, 1009.5627.

[34]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[35]  N. Attard Nash equilibrium in nonzero-sum games of optimal stopping for Brownian motion , 2017, Advances in Applied Probability.

[36]  J. Bismut Sur un problème de dynkin , 1977 .

[37]  Rida Laraki,et al.  The Value of Zero-Sum Stopping Games in Continuous Time , 2005, SIAM J. Control. Optim..

[38]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae (Second Edition) , 2003 .

[39]  Jan-Henrik Steg Preemptive Investment under Uncertainty , 2015 .

[40]  G. Peskir Optimal Stopping Games and Nash Equilibrium , 2009 .

[41]  Patrick Cattiaux,et al.  Existence of a quasi-markov nash equilibrium for non-zero sum markov stopping games , 1990 .

[42]  Hassani Mohammed,et al.  The Multi-player Nonzero-sum Dynkin Game in Continuous Time , 2011 .

[43]  Mihai Sîrbu,et al.  A Two-Person Game for Pricing Convertible Bonds , 2006, SIAM J. Control. Optim..