A 96-well-plate–based optical method for the quantitative and qualitative evaluation of Pseudomonas aeruginosa biofilm formation and its application to susceptibility testing

[1]  Rainer Fischer,et al.  Genetic determinants of Pseudomonas aeruginosa biofilm establishment. , 2010, Microbiology.

[2]  Paul Stoodley,et al.  Evolving concepts in biofilm infections , 2009, Cellular microbiology.

[3]  S. Aaron,et al.  A retrospective analysis of biofilm antibiotic susceptibility testing: a better predictor of clinical response in cystic fibrosis exacerbations. , 2009, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[4]  T. Tolker-Nielsen,et al.  Insight into the microbial multicellular lifestyle via flow‐cell technology and confocal microscopy , 2009, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[5]  J. Foweraker Recent advances in the microbiology of respiratory tract infection in cystic fibrosis , 2008, British medical bulletin.

[6]  J. Lopez-Ribot,et al.  A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing , 2008, Nature Protocols.

[7]  F. Vanderbist,et al.  In vitro activity of antibiotic combinations against Pseudomonas aeruginosa biofilm and planktonic cultures. , 2008, International journal of antimicrobial agents.

[8]  Philip S. Stewart,et al.  Physiological heterogeneity in biofilms , 2008, Nature Reviews Microbiology.

[9]  H. Nelis,et al.  Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. , 2008, Journal of microbiological methods.

[10]  J. Gasol,et al.  Evaluating the Flow-Cytometric Nucleic Acid Double-Staining Protocol in Realistic Situations of Planktonic Bacterial Death , 2008, Applied and Environmental Microbiology.

[11]  S. Menor,et al.  Microplate Alamar blue assay for susceptibility testing of Candida albicans biofilms. , 2007, Medical mycology.

[12]  S. M. Kirov,et al.  Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. , 2007, Microbiology.

[13]  U. Holzgrabe,et al.  Laser-induced fluorescence-capillary electrophoresis and fluorescence microplate reader measurement: two methods to quantify the effect of antibiotics. , 2007, Analytical chemistry.

[14]  Stefan Wuertz,et al.  Toward Automated Analysis of Biofilm Architecture: Bias Caused by Extraneous Confocal Laser Scanning Microscopy Images , 2007, Applied and Environmental Microbiology.

[15]  Pradeep K. Singh,et al.  The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. , 2007, The Journal of clinical investigation.

[16]  R. Martinuzzi,et al.  The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the Calgary Biofilm Device , 2006, Biological Procedures Online.

[17]  Samuel I. Miller,et al.  Differentiation and Distribution of Colistin- and Sodium Dodecyl Sulfate-Tolerant Cells in Pseudomonas aeruginosa Biofilms , 2006, Journal of bacteriology.

[18]  John Heritage,et al.  Measurement of ampicillin, vancomycin, linezolid and gentamicin activity against enterococcal biofilms. , 2006, The Journal of antimicrobial chemotherapy.

[19]  D. White,et al.  New methodology for viability testing in environmental samples. , 2006, Molecular and cellular probes.

[20]  Frederick M Ausubel,et al.  Correction for Liberati et al., An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants , 2006, Proceedings of the National Academy of Sciences.

[21]  Lucas J Stal,et al.  Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP , 2006, BMC Ecology.

[22]  J. Emerson,et al.  Use of Pseudomonas biofilm susceptibilities to assign simulated antibiotic regimens for cystic fibrosis airway infection. , 2005, The Journal of antimicrobial chemotherapy.

[23]  Michael J. MacCoss,et al.  Aminoglycoside antibiotics induce bacterial biofilm formation , 2005, Nature.

[24]  B. Iglewski,et al.  Azithromycin Retards Pseudomonas aeruginosa Biofilm Formation , 2004, Journal of Clinical Microbiology.

[25]  S. Stocks Mechanism and use of the commercially available viability stain, BacLight , 2004, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[26]  J. Emerson,et al.  Clinically Feasible Biofilm Susceptibility Assay for Isolates of Pseudomonas aeruginosa from Patients with Cystic Fibrosis , 2004, Journal of Clinical Microbiology.

[27]  M. Parsek,et al.  Bacterial biofilms: an emerging link to disease pathogenesis. , 2003, Annual review of microbiology.

[28]  P. Stewart,et al.  A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance , 2003, Nature.

[29]  P. Stewart,et al.  A microtiter-plate screening method for biofilm disinfection and removal. , 2003, Journal of microbiological methods.

[30]  S. Kjelleberg,et al.  Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors , 2003, The EMBO journal.

[31]  B. Ramsey,et al.  Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration: lack of association in cystic fibrosis. , 2003, Chest.

[32]  M. Parsek,et al.  Heavy Metal Resistance of Biofilm and Planktonic Pseudomonas aeruginosa , 2003, Applied and Environmental Microbiology.

[33]  H. Ceri,et al.  Biofilm bacteria: formation and comparative susceptibility to antibiotics. , 2002, Canadian journal of veterinary research = Revue canadienne de recherche veterinaire.

[34]  Richard C Boucher,et al.  Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. , 2002, The Journal of clinical investigation.

[35]  B. Wickes,et al.  Standardized Method for In Vitro Antifungal Susceptibility Testing of Candida albicansBiofilms , 2001, Antimicrobial Agents and Chemotherapy.

[36]  A. McBain,et al.  Biofilms: their impact on health and their recalcitrance toward biocides. , 2001, American journal of infection control.

[37]  H. Ceri,et al.  Multidrug Efflux Pumps: Expression Patterns and Contribution to Antibiotic Resistance in Pseudomonas aeruginosa Biofilms , 2001, Antimicrobial Agents and Chemotherapy.

[38]  R. Desjardins,et al.  LIVE/DEAD BacLight : application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. , 1999, Journal of microbiological methods.

[39]  H. Ceri,et al.  The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms , 1999, Journal of Clinical Microbiology.

[40]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[41]  J. Lisle,et al.  Rapid direct methods for enumeration of specific, active bacteria in water and biofilms , 1998, Journal of applied microbiology.

[42]  R. Kolter,et al.  Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.

[43]  B. Ramsey,et al.  Management of pulmonary disease in patients with cystic fibrosis. , 1996, The New England journal of medicine.

[44]  P. Stewart,et al.  Nonuniform spatial patterns of respiratory activity within biofilms during disinfection , 1995, Applied and environmental microbiology.

[45]  J. Nickel,et al.  Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material , 1985, Antimicrobial Agents and Chemotherapy.

[46]  T. Maira-Litrán,et al.  The physiology and collective recalcitrance of microbial biofilm communities. , 2002, Advances in microbial physiology.

[47]  A. Brooun,et al.  A Dose-Response Study of Antibiotic Resistance in Pseudomonas aeruginosa Biofilms , 2000 .

[48]  J. Costerton,et al.  Bacterial resistance to antibiotics: the role of biofilms. , 1991, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.