Innovations in Web Personalization

The diffusion of the Web and the huge amount of information available online have given rise to the urgent need for systems able to intelligently assist users, when they browse the network. Web personalization offers this invaluable opportunity, representing one of the most important technologies required by an ever increasing number of real-world applications. This chapter presents an overview of the Web personalization in the endeavor of Intelligent systems.

[1]  Ivan Koychev,et al.  Learning about Users from Observation , 2000 .

[2]  Johannes Fürnkranz,et al.  Web Structure Mining --- Exploiting the Graph Structure of the World-Wide Web , 2002 .

[3]  James E. Pitkow,et al.  In Search of Reliable Usage Data on the WWW , 1997, Comput. Networks.

[4]  Michael Hadjimichael,et al.  Subsessions: A granular approach to click path analysis , 2004 .

[5]  John Riedl,et al.  Recommender systems in e-commerce , 1999, EC '99.

[6]  Xiangji Huang,et al.  Comparison of interestingness functions for learning web usage patterns , 2002, CIKM '02.

[7]  Jaideep Srivastava,et al.  Web usage mining: discovery and applications of usage patterns from Web data , 2000, SKDD.

[8]  Maurice D. Mulvenna,et al.  Discovering Internet marketing intelligence through online analytical web usage mining , 1998, SGMD.

[9]  Simon Shiu,et al.  Mining fuzzy association rules for web access case adaptation , 2001 .

[10]  Tapan Kamdar,et al.  On Creating Adaptive Web Servers Using Weblog Mining , 2000 .

[11]  Yannis Manolopoulos,et al.  Exploiting Web Log Mining for Web Cache Enhancement , 2001, WEBKDD.

[12]  Jeffrey Heer,et al.  Mining the Structure of User Activity using Cluster Stability , 2002 .

[13]  H. Varian,et al.  Conditioning Prices on Purchase History , 2005 .

[14]  D. Silver,et al.  Workshop on Machine Learning for User Modeling : Challenges Edinburgh , Scotland 24 , 2005 .

[15]  Sergio Greco,et al.  Web Communities: Models and Algorithms , 2004, World Wide Web.

[16]  Bruce Krulwich,et al.  Learning user information interests through extraction of semantically significant phrases , 1996 .

[17]  Mark Crovella,et al.  Characteristics of WWW Client-based Traces , 1995 .

[18]  Ken Lang,et al.  NewsWeeder: Learning to Filter Netnews , 1995, ICML.

[19]  Michael J. Pazzani,et al.  Content-Based Recommendation Systems , 2007, The Adaptive Web.

[20]  Georgios Paliouras,et al.  Web Usage Mining as a Tool for Personalization: A Survey , 2003, User Modeling and User-Adapted Interaction.

[21]  Bamshad Mobasher,et al.  Data Mining for Web Personalization , 2007, The Adaptive Web.

[22]  Zhiguo Gong,et al.  Web structure mining: an introduction , 2005, 2005 IEEE International Conference on Information Acquisition.

[23]  Jaideep Srivastava,et al.  Web usage mining: discovery and application of interesting patterns from web data , 2000 .

[24]  Pier Luca Lanzi,et al.  Mining interesting knowledge from weblogs: a survey , 2005, Data Knowl. Eng..

[25]  Philip S. Yu,et al.  A new method for similarity indexing of market basket data , 1999, SIGMOD '99.

[26]  Jaideep Srivastava,et al.  Data Preparation for Mining World Wide Web Browsing Patterns , 1999, Knowledge and Information Systems.

[27]  Arindam Banerjee,et al.  Clickstream clustering using weighted longest common subsequences , 2001 .

[28]  Steffen Staab,et al.  Learning by googling , 2004, SKDD.

[29]  Jaideep Srivastava,et al.  Web Mining , 2004, Data Mining and Knowledge Discovery.

[30]  Olfa Nasraoui,et al.  Web Usage Mining , 2011 .

[31]  Mark Claypool,et al.  Combining Content-Based and Collaborative Filters in an Online Newspaper , 1999, SIGIR 1999.

[32]  Anupam Joshi,et al.  On Using a Warehouse to Analyze Web Logs , 2003, Distributed and Parallel Databases.

[33]  Farnoush Banaei-Kashani,et al.  A Reliable, Efficient, and Scalable System for Web Usage Data Acquisition , 2001 .

[34]  Alfred Kobsa,et al.  The Adaptive Web, Methods and Strategies of Web Personalization , 2007, The Adaptive Web.

[35]  Henry Lieberman,et al.  Letizia: An Agent That Assists Web Browsing , 1995, IJCAI.

[36]  Bing Liu,et al.  Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data , 2006, Data-Centric Systems and Applications.

[37]  Myra Spiliopoulou,et al.  Data Mining for the Web , 1999, PKDD.

[38]  Sushmita Mitra,et al.  Web mining: a survey in the fuzzy framework , 2004, Fuzzy Sets Syst..

[39]  Jaideep Srivastava,et al.  Automatic personalization based on Web usage mining , 2000, CACM.

[40]  Bamshad Mobasher,et al.  Web Usage Mining and Personalization , 2004, The Practical Handbook of Internet Computing.

[41]  Vipin Kumar,et al.  Discovery of Web Robot Sessions Based on their Navigational Patterns , 2004, Data Mining and Knowledge Discovery.

[42]  Siu Cheung Hui,et al.  Web Usage Mining for Semantic Web Personalization , 2005 .

[43]  Udi Manber,et al.  Experience with personalization of Yahoo! , 2000, CACM.

[44]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[45]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[46]  Ajith Abraham,et al.  Business Intelligence from Web Usage Mining , 2003, J. Inf. Knowl. Manag..

[47]  Edith Cohen,et al.  Improving end-to-end performance of the Web using server volumes and proxy filters , 1998, SIGCOMM '98.

[48]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[49]  Dimitrios Koukopoulos,et al.  A REAL-TIME AUCTION SYSTEM OVER THE WWW , 1999 .

[50]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[51]  Philippe Lahire,et al.  Customization of Links between Classes , 1999 .

[52]  Jan Komorowski,et al.  Principles of Data Mining and Knowledge Discovery , 2001, Lecture Notes in Computer Science.

[53]  Anindya Ghose,et al.  Personalized Pricing and Quality Differentiation , 2005, Manag. Sci..

[54]  H. Varian,et al.  Conditioning Prices on Purchase History , 2005 .

[55]  Olfa Nasraoui,et al.  Combining Web Usage Mining and Fuzzy Inference for Website Personalization , 2003 .

[56]  Tom M. Mitchell,et al.  Experience with a learning personal assistant , 1994, CACM.

[57]  Ron Kohavi,et al.  WEBKDD 2001 — Mining Web Log Data Across All Customers Touch Points , 2002, Lecture Notes in Computer Science.

[58]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[59]  Krishna Bharat,et al.  WEBVIZ: A Tool for World Wide Web Access Log Analysis , 1994 .

[60]  Keishi Tajima,et al.  Discovery and Retrieval of Logical Information Units in Web , 1999, WOWS.

[61]  Eric Schwarzkopf An Adaptive Web Site for the UM2001 Conference , 2001 .

[62]  Jaideep Srivastava,et al.  Discovery of Interesting Usage Patterns from Web Data , 1999, WEBKDD.

[63]  Athena Vakali,et al.  An Overview of Web Data Clustering Practices , 2004, EDBT Workshops.

[64]  Jaideep Srivastava,et al.  Grouping Web page references into transactions for mining World Wide Web browsing patterns , 1997, Proceedings 1997 IEEE Knowledge and Data Engineering Exchange Workshop.

[65]  Soumen Chakrabarti,et al.  Data mining for hypertext: a tutorial survey , 2000, SKDD.

[66]  Wolfgang Lindner,et al.  Current Trends in Database Technology - EDBT 2004 Workshops, EDBT 2004 Workshops PhD, DataX, PIM, P2P&DB, and ClustWeb, Heraklion, Crete, Greece, March 14-18, 2004, Revised Selected Papers , 2004, EDBT Workshops.

[67]  Vir V. Phoha,et al.  Web user clustering from access log using belief function , 2001, K-CAP '01.

[68]  Petra Benkovská,et al.  Web Usage Mining , 2009, Encyclopedia of Database Systems.

[69]  Jiawei Han,et al.  DISCOVERING AND MINING USER WEB-PAGE TRAVERSAL PATTERNS , 2001 .

[70]  Kevin S. McCurley,et al.  Untangling compound documents on the web , 2003, HYPERTEXT '03.

[71]  Alfred Kobsa,et al.  Personalised hypermedia presentation techniques for improving online customer relationships , 2001, The Knowledge Engineering Review.

[72]  Jonathan L. Herlocker,et al.  Clustering items for collaborative filtering , 1999 .

[73]  Jian Pei,et al.  Mining Access Patterns Efficiently from Web Logs , 2000, PAKDD.

[74]  G. Karypis,et al.  TR 00-043 Application of Dimensionality Reduction in Recommender SystemA Case Study , 2000 .

[75]  Hendrik Blockeel,et al.  Web mining research: a survey , 2000, SKDD.

[76]  Markus A. Thies Adaptive User Interfaces , 1994, IFIP Congress.

[77]  Kevin Chen-Chuan Chang,et al.  Editorial: special issue on web content mining , 2004, SKDD.

[78]  Nematollaah Shiri,et al.  An Efficient Technique for Mining Usage Profiles Using Relational Fuzzy Subtractive Clustering , 2005, International Workshop on Challenges in Web Information Retrieval and Integration.

[79]  Anupam Joshi,et al.  Automatic Web User Profiling and Personalization Using Robust Fuzzy Relational Clustering , 2002 .

[80]  Keith W. Miller,et al.  How good is good enough?: an ethical analysis of software construction and use , 1994, CACM.