Examples of discontinuous maximal monotone linear operators and the solution to a recent problem posed by B.F. Svaiter

Abstract In this paper, we give two explicit examples of unbounded linear maximal monotone operators. The first unbounded linear maximal monotone operator S on l 2 is skew. We show its domain is a proper subset of the domain of its adjoint S ∗ , and − S ∗ is not maximal monotone. This gives a negative answer to a recent question posed by Svaiter. The second unbounded linear maximal monotone operator is the inverse Volterra operator T on L 2 [ 0 , 1 ] . We compare the domain of T with the domain of its adjoint T ∗ and show that the skew part of T admits two distinct linear maximal monotone skew extensions. These unbounded linear maximal monotone operators show that the constraint qualification for the maximality of the sum of maximal monotone operators cannot be significantly weakened, and they are simpler than the example given by Phelps–Simons. Interesting consequences on Fitzpatrick functions for sums of two maximal monotone operators are also given.

[1]  Stephen Simons,et al.  Fenchel duality, Fitzpatrick functions and the Kirszbraun-Valentine extension theorem , 2005 .

[2]  Hristo S. Sendov,et al.  Fitzpatrick functions: inequalities, examples, and remarks on a problem by S. Fitzpatrick , 2005 .

[3]  F. Browder,et al.  Linear Maximal Monotone Operators and Singular Nonlinear Integral Equations of Hammerstein Type , 1978 .

[4]  B. F. Svaiter Non-enlargeable operators and self-cancelling operators , 2008 .

[5]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[6]  K. Stromberg Introduction to classical real analysis , 1981 .

[7]  S. Fitzpatrick Representing monotone operators by convex functions , 1988 .

[8]  Heinz H. Bauschke,et al.  Autoconjugate representers for linear monotone operators , 2008, Math. Program..

[9]  Heinz H. Bauschke,et al.  Maximal monotonicity of dense type, local maximal monotonicity, and monotonicity of the conjugate are all the same for continuous linear operators , 1999 .

[10]  Heinz H. Bauschke,et al.  On Borwein--Wiersma Decompositions of Monotone Linear Relations , 2009, SIAM J. Optim..

[11]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[12]  M. D. Voisei The Sum Theorem for Linear Maximal Monotone Operators , 2006 .

[13]  R. Kannan,et al.  Nonlinear analysis : a collection of papers in honor of Erich H. Rothe , 1978 .

[14]  S. Simons From Hahn-Banach to monotonicity , 2008 .

[15]  F. Smithies A HILBERT SPACE PROBLEM BOOK , 1968 .

[16]  C. Zălinescu,et al.  Linear Monotone Subspaces of Locally Convex Spaces , 2008, 0809.5287.

[17]  R. Rockafellar On the maximality of sums of nonlinear monotone operators , 1970 .

[18]  R. R. Phelps,et al.  Unbounded linear monotone operators on nonreflexive Banach spaces. , 1998 .

[19]  Heinz H. Bauschke,et al.  Monotone Linear Relations: Maximality and Fitzpatrick Functions , 2008, 0805.4256.

[20]  R. Cross Multivalued Linear Operators , 1998 .

[21]  Heinz H. Bauschke,et al.  Fitzpatrick Functions and Continuous Linear Monotone Operators , 2007, SIAM J. Optim..

[22]  Jonathan M. Borwein,et al.  Asplund Decomposition of Monotone Operators , 2007, SIAM J. Optim..

[23]  Jean-Paul Penot,et al.  The relevance of convex analysis for the study of monotonicity , 2004 .