Cryptographic pseudo-random sequence from the spatial chaotic map

[1]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[2]  Leon O. Chua,et al.  Cellular neural networks: applications , 1988 .

[3]  Carver A. Mead,et al.  Implementing neural architectures using analog VLSI circuits , 1989 .

[4]  Leon O. Chua,et al.  Resistive grid image filtering: input/output analysis via the CNN framework , 1992 .

[5]  T. Kohda,et al.  Statistics of chaotic binary sequences , 1997, IEEE Trans. Inf. Theory.

[6]  Nigel P. Smart,et al.  p-adic Chaos and Random Number Generation , 1998, Exp. Math..

[7]  Krzysztof Galkowski Higher order discretization of 2-D systems , 2000 .

[8]  L. Kocarev Chaos-based cryptography: a brief overview , 2001 .

[9]  Vimal Singh,et al.  Stability analysis of 2-D digital filters described by the Fornasini-Marchesini second model using overflow nonlinearities , 2001 .

[10]  Yuval Bistritz,et al.  Stability testing of 2-D discrete linear systems by telepolation of an immittance-type tabular test , 2001 .

[11]  Guanrong Chen,et al.  Asymptotic behavior of delay 2-D discrete logistic systems , 2002 .

[12]  Guanrong Chen,et al.  On Spatial Lyapunov Exponents and Spatial Chaos , 2003, Int. J. Bifurc. Chaos.

[13]  Guanrong Chen,et al.  On Spatial Periodic orbits and Spatial Chaos , 2003, Int. J. Bifurc. Chaos.

[14]  Guanrong Chen,et al.  On generalized synchronization of spatial chaos , 2003 .

[15]  Angelo Vulpiani,et al.  Properties making a chaotic system a good pseudo random number generator. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Madhekar Suneel,et al.  Cryptographic pseudo-random sequences from the chaotic Hénon map , 2006, ArXiv.