Nonlinear Dynamic Systems Parameterization Using Interval-Based Global Optimization: Computing Lipschitz Constants and Beyond

Numerous state-feedback and observer designs for nonlinear dynamic systems (NDS) have been developed in the past three decades. These designs assume that NDS nonlinearities satisfy one of the following function set classifications: bounded Jacobian, Lipschitz continuity, one-sided Lipschitz, quadratic inner-boundedness, and quadratic boundedness. These function sets are characterized by constant scalars or matrices bounding the NDS' nonlinearities. These constants (i) depend on the NDS' operating region, topology, and parameters, and (ii) are utilized to synthesize observer/controller gains. Unfortunately, there is a near-complete absence of algorithms to compute such bounding constants. In this paper, we develop analytical then computational methods to compute such constants. First, for every function set classification, we derive analytical expressions for these bounding constants through global maximization formulations. Second, we utilize a derivative-free, interval-based global maximization algorithm based on branch-and-bound framework to numerically obtain the bounding constants. Third, we showcase the effectiveness of our approaches to compute the corresponding parameters on some NDS such as highway traffic networks and synchronous generator models.

[1]  P. Kundur,et al.  Power system stability and control , 1994 .

[2]  Rajesh Rajamani,et al.  Nonlinear Observer for Bounded Jacobian Systems, With Applications to Automotive Slip Angle Estimation , 2011, IEEE Transactions on Automatic Control.

[3]  M. Abbaszadeh,et al.  Nonlinear observer design for one-sided Lipschitz systems , 2010, Proceedings of the 2010 American Control Conference.

[4]  Wei Zhang,et al.  Observer-based stabilization of one-sided Lipschitz systems with application to flexible link manipulator , 2015 .

[5]  A. Alessandri Design of observers for lipschitz nonlinear systems using LMI , 2004 .

[6]  E. Hansen Global optimization using interval analysis — the multi-dimensional case , 1980 .

[7]  César A. Muñoz,et al.  Verified Real Number Calculations: A Library for Interval Arithmetic , 2007, IEEE Transactions on Computers.

[8]  D. Siljak,et al.  Robust Decentralized Turbine/Governor Control Using Linear Matrix Inequalities , 2002, IEEE Power Engineering Review.

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  Yan Wang,et al.  Multi-Objective Nonlinear Observer Design using BMIs , 2018, 2018 Annual American Control Conference (ACC).

[11]  Junjian Qi,et al.  Robust Dynamic State Estimation of Synchronous Machines With Asymptotic State Estimation Error Performance Guarantees , 2020, IEEE Transactions on Power Systems.

[12]  Christian Claudel,et al.  Traffic Density Modeling and Estimation on Stretched Highways: The Case for Lipschitz-Based Observers , 2019, 2019 American Control Conference (ACC).

[13]  M. A. Wolfe,et al.  Interval methods for global optimization , 1996 .

[14]  Joan Bruna,et al.  Intriguing properties of neural networks , 2013, ICLR.

[15]  Belaid Moa Interval methods for global optimization , 2007 .

[16]  Ahmad F. Taha,et al.  New Insights on One-Sided Lipschitz and Quadratically-Inner Bounded Nonlinear Dynamic Systems , 2020, 2020 American Control Conference (ACC).

[17]  Ramon E. Moore On computing the range of a rational function of n variables over a bounded region , 1976, Computing.

[18]  Javad Lavaei,et al.  Multiplier-based Observer Design for Large-Scale Lipschitz Systems , 2018 .

[19]  Christian Claudel,et al.  A Control-Theoretic Approach for Scalable and Robust Traffic Density Estimation Using Convex Optimization , 2021, IEEE Transactions on Intelligent Transportation Systems.

[20]  Manfred Morari,et al.  Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks , 2019, NeurIPS.

[21]  W. Rudin Principles of mathematical analysis , 1964 .

[22]  Masoud Abbaszadeh,et al.  Design of Nonlinear State Observers for One-Sided Lipschitz Systems , 2013, ArXiv.

[23]  Ali Zemouche,et al.  Observer Design for Lipschitz Nonlinear Systems: The Discrete-Time Case , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[24]  Ali Zemouche,et al.  On LMI conditions to design observers for Lipschitz nonlinear systems , 2013, Autom..

[25]  Ahmad Afshar,et al.  Observer-based tracking controller design for a class of Lipschitz nonlinear systems , 2018 .

[26]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[27]  Tahereh Binazadeh,et al.  Observer-based H∞ finite-time controller for time-delay nonlinear one-sided Lipschitz systems with exogenous disturbances , 2018, Journal of Vibration and Control.

[28]  Mohsen Ekramian,et al.  Observer-based controller for Lipschitz nonlinear systems , 2017, Int. J. Syst. Sci..

[29]  Pushkin Kachroo,et al.  Observability and Sensor Placement Problem on Highway Segments: A Traffic Dynamics-Based Approach , 2016, IEEE Transactions on Intelligent Transportation Systems.

[30]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[31]  H. Marquez Nonlinear Control Systems: Analysis and Design , 2003, IEEE Transactions on Automatic Control.

[32]  Michel Zasadzinski,et al.  Observer design for one-sided Lipschitz discrete-time systems , 2012, Syst. Control. Lett..

[33]  M. H. van Emden,et al.  Termination Criteria in the Moore-Skelboe Algorithm for Global Optimization by Interval Arithmetic , 2004 .

[34]  Housheng Su,et al.  Full-order and reduced-order observers for one-sided Lipschitz nonlinear systems using Riccati equations , 2012 .

[35]  Martin Mönnigmann,et al.  Fast computation of Lipschitz constants on hyperrectangles using sparse codelists , 2018, Comput. Chem. Eng..

[36]  Knud D. Andersen,et al.  The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm , 2000 .

[37]  B. P. Zhang,et al.  Estimation of the Lipschitz constant of a function , 1996, J. Glob. Optim..

[38]  S. Skelboe Computation of rational interval functions , 1974 .

[39]  Junjian Qi,et al.  Characterizing the Nonlinearity of Power System Generator Models , 2019, 2019 American Control Conference (ACC).

[40]  R Rajamani,et al.  The bounded Jacobian approach to nonlinear observer design , 2010, Proceedings of the 2010 American Control Conference.

[41]  Joe H. Chow,et al.  A toolbox for power system dynamics and control engineering education and research , 1992 .

[42]  Devesh K. Jha,et al.  Safe Approximate Dynamic Programming via Kernelized Lipschitz Estimation , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[43]  Bevan K. Youse,et al.  Introduction to real analysis , 1972 .

[44]  Behçet Açikmese,et al.  Observers for systems with nonlinearities satisfying incremental quadratic constraints , 2011, Autom..

[45]  J. Solymosi,et al.  Gershgorin disks for multiple eigenvalues of non-negative matrices , 2016, 1609.07439.

[46]  R. Rajamani,et al.  Observer design for Lipschitz nonlinear systems using Riccati equations , 2010, Proceedings of the 2010 American Control Conference.

[47]  Krishna Vijayaraghavan Observer design for generalized sector-bounded noisy nonlinear systems , 2014, J. Syst. Control. Eng..

[48]  B. F.,et al.  Robust observer-based stabilization of Lipschitz nonlinear uncertain systems via LMIs-Discussions and new design procedure , 2019 .

[49]  J. Zilinskas,et al.  Analysis of different norms and corresponding Lipschitz constants for global optimization in multidi , 2007 .

[50]  Dusan M. Stipanovic,et al.  Robust decentralized turbine/governor control using linear matrix inequalities , 2002 .

[51]  Leipo Liu,et al.  Static Output Tracking Control of Nonlinear Systems with One-Sided Lipschitz Condition , 2014 .

[52]  Yasuo Fujii,et al.  An interval arithmetic method for global optimization , 1979, Computing.

[53]  Yangzhou Chen,et al.  Decentralized State-Observer-Based Traffic Density Estimation of Large-Scale Urban Freeway Network by Dynamic Model , 2017, Inf..

[54]  Jun Song,et al.  Robust finite-time H∞ control for one-sided Lipschitz nonlinear systems via state feedback and output feedback , 2015, J. Frankl. Inst..

[55]  Mohammad Hassan Asemani,et al.  Robust H∞ sliding mode observer‐based fault‐tolerant control for One‐sided Lipschitz nonlinear systems , 2019, Asian Journal of Control.

[56]  Jianhui Wang,et al.  Comparing Kalman Filters and Observers for Power System Dynamic State Estimation With Model Uncertainty and Malicious Cyber Attacks , 2016, IEEE Access.

[57]  Saïd Mammar,et al.  Observer for Lipschitz nonlinear systems: Mean Value Theorem and sector nonlinearity transformation , 2012, 2012 IEEE International Symposium on Intelligent Control.

[58]  D. Siljak,et al.  Robust stabilization of nonlinear systems: The LMI approach , 2000 .

[59]  E. Van Kampen,et al.  Global Optimization using Interval Analysis: Interval Optimization for Aerospace Applications , 2010 .

[60]  G. William Walster,et al.  Global Optimization Using Interval Analysis: Revised and Expanded , 2007 .

[61]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[62]  B D Greenshields,et al.  A study of traffic capacity , 1935 .