Giant heterogeneous magnetostriction in Fe–Ga alloys: Effect of trace element doping

Abstract Enhanced magnetostriction in iron-rich Fe–Ga alloys has been attributed to a heterogeneous nanostructure with tetragonal inclusions, although direct experimental evidence for their structure was lacking. Here we use transmission electron microscopy to show that melt-spun, (001) textured Fe83Ga17 ribbons contain 3 nm inclusions with c-axis Ga–Ga pairs aligned in a tetragonal L60-type structure; the induced tetragonality of the entire A2 matrix is observed directly by synchrotron X-ray diffraction. Trace doping with 0.2 atomic % nonmagnetic elements such as La or Pb increases the magnetocrystalline anisotropy and greatly enhances the magnetostriction. Rare-earth dopants from La to Lu produce a quarter-shell variation of the magnetic anisotropy; the crystal field parameter A20 is determined to be −15 Ka0−2. The best trace dopants are the light rare earths Ce and Pr that give a transverse magnetostriction of up to −800 ppm, as these elements soften the tetragonal modulus via their crystal field interaction. A new model is proposed to explain nanoheterogeneous magnetostriction, where the Ga–Ga pairs remain fixed, but the tetragonal axis of the matrix can be realigned in a magnetic field by a series of small deformations of the A2 matrix. These results signal a new approach to creating highly-magnetostrictive materials.

[1]  T. Lograsso,et al.  Tetragonal magnetostriction and magnetoelastic coupling in Fe-Al, Fe-Ga, Fe-Ge, Fe-Si, Fe-Ga-Al, and Fe-Ga-Ge alloys , 2012 .

[2]  H. D. Chopra,et al.  Non-Joulian magnetostriction , 2015, Nature.

[3]  J. Inoue,et al.  Extraordinarily large perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite CoxFe3−xO4(001) (x = 0.75, 1.0) thin films , 2013 .

[4]  Marilyn Wun-Fogle,et al.  Strong, ductile, and low-field-magnetostrictive alloys based on Fe-Ga , 2000 .

[5]  M. Atif,et al.  Improved magnetostriction of Fe72Ga28 boron doped alloys , 2011 .

[6]  Manfred Wuttig,et al.  Elasticity and magnetoelasticity of Fe–Ga solid solutions , 2002 .

[7]  M. Wuttig,et al.  Magnetostriction and magnetic heterogeneities in iron-gallium. , 2010, Physical review letters.

[8]  Huibin Xu,et al.  Giant magnetostriction in Tb-doped Fe83Ga17 melt-spun ribbons , 2013, 1307.2385.

[9]  X. Ren,et al.  Noncubic crystallographic symmetry of a cubic ferromagnet: Simultaneous structural change at the ferromagnetic transition , 2008 .

[10]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[11]  S. Pascarelli,et al.  Direct measurement of intrinsic atomic scale magnetostriction. , 2008, Physical review letters.

[12]  Martin Hÿtch,et al.  Quantitative measurement of displacement and strain fields from HREM micrographs , 1998 .

[13]  R. Dunlap,et al.  A Mössbauer effect study of structural ordering in rapidly quenched Fe–Ga alloys , 2006 .

[14]  T. Lograsso,et al.  Relation between Ga ordering and magnetostriction of Fe-Ga alloys studied by x-ray diffuse scattering , 2010 .

[15]  T. Lograsso,et al.  Structural transformations in quenched Fe-Ga alloys , 2003 .

[16]  E. Summers,et al.  Magnetostriction of binary and ternary Fe–Ga alloys , 2007 .

[17]  P. Gehring,et al.  Role of nanoscale precipitates on the enhanced magnetostriction of heat-treated galfenol (Fe1-xGax) alloys. , 2009, Physical review letters.

[18]  Apurva Mehta,et al.  Giant magnetostriction in annealed Co(1-x)Fe(x) thin-films. , 2011, Nature communications.

[19]  J. Cadogan,et al.  Analysis of high‐field magnetization measurements on R2Fe14B single crystals (R=Tb, Dy, Ho, Er, and Tm) , 1988 .

[20]  M. Wuttig,et al.  Nano-magnetism of magnetostriction in Fe35Co65 , 2014 .

[21]  Guangru Zhang,et al.  Giant enhancement in the magnetostrictive effect of FeGa alloys doped with low levels of terbium , 2013 .

[22]  Yiwei Liu,et al.  Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites , 2014, Scientific Reports.

[23]  Chengbao Jiang,et al.  Improved magnetostriction of Dy-doped Fe83Ga17 melt-spun ribbons , 2014 .

[24]  M. Wuttig,et al.  Giant nonhysteretic responses of two-phase nanostructured alloys. , 2011, Physical review letters.

[25]  K. Buschow,et al.  Samarium in Crystal Fields, a Case of StrongJ-Mixing , 1976 .

[26]  T. Lograsso,et al.  Effect of interstitial additions on magnetostriction in Fe–Ga alloys , 2008 .

[27]  Guangru Zhang,et al.  Thermally driven large magnetoresistance and magnetostriction in multifunctional magnetic FeGa–Tb alloys , 2014 .

[28]  Thomas A. Lograsso,et al.  Structural investigations of Fe–Ga alloys: Phase relations and magnetostrictive behavior , 2008 .

[29]  Marilyn Wun-Fogle,et al.  Extraordinary magnetoelasticity and lattice softening in bcc Fe-Ga alloys , 2003 .

[30]  D. Viehland,et al.  Nanodispersed D O 3 -phase nanostructures observed in magnetostrictive Fe–19% Ga Galfenol alloys , 2008 .

[31]  Marilyn Wun-Fogle,et al.  Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys , 2000 .

[32]  A. Khachaturyan,et al.  Giant quasi-elastic responses in decomposed two-phase nanodispersions: Phase field modeling , 2012 .

[33]  S. Mashiko,et al.  Laser emission from high-gain media of dye-doped dendrimer , 2002 .

[34]  A. Khachaturyan,et al.  Phase field theory of proper displacive phase transformations: Structural anisotropy and directional flexibility, a vector model, and the transformation kinetics , 2011 .

[35]  D. Viehland,et al.  Structurally Heterogeneous Model of Extrinsic Magnetostriction for Fe-Ga and Similar Magnetic Alloys: Part I. Decomposition and Confined Displacive Transformation , 2007 .

[36]  N. J. Mellors,et al.  A Mössbauer spectroscopy and neutron diffraction study of magnetostrictive, melt-spun Fe–Ga alloy ribbons , 2012 .

[37]  B. A. Calhoun,et al.  Ferromagnetic materials , 1955 .