Model selection of the generalized von Mises distribution based on empirical mode decomposition with data analyses

Abstract This paper presents a method for selecting a distribution within the generalized von Mises (GvM) class. In this method, the logarithmic form of the GvM probability frequency function is regarded as the sum of a constant and several cosine functions with different frequencies. Based on the empirical mode decomposition (EMD) method, the corresponding logarithmic series is decomposed to several intrinsic mode functions (IMF) whose corresponding instantaneous frequencies (IF) are used to be the basis of the GvM model selection. The applications of the proposed method are illustrated using simulated circular data and real wind direction data. The results demonstrate that the method proposed here can provide a good choice for the GvM model selection.

[1]  James F. Kaiser,et al.  The use of a masking signal to improve empirical mode decomposition , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[2]  Riccardo Gatto,et al.  Some computational aspects of the generalized von Mises distribution , 2008, Stat. Comput..

[3]  R. Gatto Information theoretic results for circular distributions , 2009 .

[4]  O. E. Smith Vector wind and vector wind shear models 0 to 27 km altitude for Cape Kennedy, Florida, and Vandenberg AFB, California , 1976 .

[5]  S. S. Shen,et al.  A confidence limit for the empirical mode decomposition and Hilbert spectral analysis , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  Ian T. Jolliffe,et al.  Fitting mixtures of von Mises distributions: a case study involving sudden infant death syndrome , 2003, Comput. Stat. Data Anal..

[7]  Azami Zaharim,et al.  The suitability of statistical distribution in fitting wind speed data , 2008 .

[8]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. II. A/lgorithms and applications , 1992, Proc. IEEE.

[9]  Alan Lee,et al.  Circular data , 2010 .

[10]  Klaus Schmidt-Koenig,et al.  ON THE ROLE OF THE LOFT, THE DISTANCE AND SITE OF RELEASE IN PIGEON HOMING (THE "CROSS-LOFT EXPERIMENT") , 1963 .

[11]  B. Bleaney,et al.  Dynamic nuclear polarization of liquid 3He , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  J. A. Carta,et al.  Statistical modelling of directional wind speeds using mixtures of von Mises distributions: Case study , 2008 .

[13]  Ibrahim Mohamed,et al.  Efficient approximation for the von Mises concentration parameter , 2008 .

[14]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals , 1992, Proc. IEEE.

[15]  S. R. Jammalamadaka,et al.  The generalized von Mises distribution , 2007 .

[16]  Gabriel Rilling,et al.  On empirical mode decomposition and its algorithms , 2003 .

[17]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  C. Laj,et al.  The Reversal of the Earth's Magnetic Field , 1996 .

[19]  Charles C. Taylor,et al.  Promoting Access to White Rose Research Papers Automatic Bandwidth Selection for Circular Density Estimation , 2022 .

[20]  Christos Zerefos,et al.  Forecasting peak pollutant levels from meteorological variables , 1995 .

[21]  S. R. Jammalamadaka,et al.  Topics in Circular Statistics , 2001 .