Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases

[1]  F. Meins RNA degradation and models for post-transcriptional gene silencing , 2000, Plant Molecular Biology.

[2]  L. Iyer,et al.  Transgene silencing in monocots , 2000, Plant Molecular Biology.

[3]  C. Llave,et al.  Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA , 2002, Science.

[4]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[5]  C. Dennis Gene regulation: The brave new world of RNA , 2002, Nature.

[6]  S. Andersson,et al.  Small RNAs in Rickettsia: are they functional? , 2002, Trends in genetics : TIG.

[7]  Eugene V Koonin,et al.  Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP‐ATPase nucleotide‐binding domains: implications for protein evolution in the RNA world , 2002, Proteins.

[8]  M. A. Rector,et al.  Endogenous and Silencing-Associated Small RNAs in Plants Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.003210. , 2002, The Plant Cell Online.

[9]  B. Reinhart,et al.  MicroRNAs in plants. , 2002, Genes & development.

[10]  S. Yokoyama,et al.  Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution , 2002, Nature.

[11]  E. Koonin,et al.  Trends in protein evolution inferred from sequence and structure analysis. , 2002, Current opinion in structural biology.

[12]  Paul Ahlquist,et al.  RNA-Dependent RNA Polymerases, Viruses, and RNA Silencing , 2002, Science.

[13]  Eugene V Koonin,et al.  Comparative genomics and evolution of proteins involved in RNA metabolism. , 2002, Nucleic acids research.

[14]  A. Pasquinelli,et al.  MicroRNAs: deviants no longer. , 2002, Trends in genetics : TIG.

[15]  D. Baulcombe,et al.  Spreading of RNA Targeting and DNA Methylation in RNA Silencing Requires Transcription of the Target Gene and a Putative RNA-Dependent RNA Polymerase Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010480. , 2002, The Plant Cell Online.

[16]  Detlef D. Leipe,et al.  Classification and evolution of P-loop GTPases and related ATPases. , 2002, Journal of molecular biology.

[17]  Patrick Cramer,et al.  Multisubunit RNA polymerases. , 2002, Current opinion in structural biology.

[18]  T. Steck,et al.  RNAi in Dictyostelium: the role of RNA-directed RNA polymerases and double-stranded RNase. , 2002, Molecular biology of the cell.

[19]  Patrick Cramer,et al.  Structural basis of transcription: α-Amanitin–RNA polymerase II cocrystal at 2.8 Å resolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Nick V Grishin,et al.  A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. , 2002, Nucleic acids research.

[21]  G. Macino,et al.  9 Quelling in Neurospora crassa , 2002 .

[22]  C. Mello,et al.  RNAi (Nematodes: Caenorhabditis elegans). , 2002, Advances in genetics.

[23]  Patrick Cramer,et al.  Structural basis of transcription: alpha-amanitin-RNA polymerase II cocrystal at 2.8 A resolution. , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  G. Macino,et al.  Quelling in Neurospora crassa. , 2002, Advances in genetics.

[25]  Tim J. P. Hubbard,et al.  SCOP database in 2002: refinements accommodate structural genomics , 2002, Nucleic Acids Res..

[26]  E. Koonin,et al.  Common Origin of Four Diverse Families of Large Eukaryotic DNA Viruses , 2001, Journal of Virology.

[27]  S. Eddy Non–coding RNA genes and the modern RNA world , 2001, Nature Reviews Genetics.

[28]  E. Koonin,et al.  Eukaryotic DNA Polymerases: Proposal for a Revised Nomenclature* , 2001, The Journal of Biological Chemistry.

[29]  K. Nishikura,et al.  A Short Primer on RNAi RNA-Directed RNA Polymerase Acts as a Key Catalyst , 2001, Cell.

[30]  Titia Sijen,et al.  On the Role of RNA Amplification in dsRNA-Triggered Gene Silencing , 2001, Cell.

[31]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[32]  S. Eddy,et al.  Computational identification of noncoding RNAs in E. coli by comparative genomics , 2001, Current Biology.

[33]  Thomas L. Madden,et al.  Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. , 2001, Nucleic acids research.

[34]  G. Storz,et al.  Identification of novel small RNAs using comparative genomics and microarrays. , 2001, Genes & development.

[35]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[36]  P. Cramer,et al.  Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution , 2001, Science.

[37]  E V Koonin,et al.  Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. , 2001, Journal of molecular biology.

[38]  S. Bell,et al.  Mechanism and regulation of transcription in archaea. , 2001, Current opinion in microbiology.

[39]  N. Grishin,et al.  GGDEF domain is homologous to adenylyl cyclase , 2001, Proteins.

[40]  R. Ebright RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. , 2000, Journal of molecular biology.

[41]  G. Macino,et al.  Post-transcriptional gene silencing across kingdoms. , 2000, Current opinion in genetics & development.

[42]  A. Fire,et al.  Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. , 2000, Molecular cell.

[43]  M. Goodman,et al.  The expanding polymerase universe , 2000, Nature Reviews Molecular Cell Biology.

[44]  E. Koonin,et al.  Bacterial homologs of the small subunit of eukaryotic DNA primase. , 2000, Journal of Molecular Microbiology and Biotechnology.

[45]  D. Higgins,et al.  T-Coffee: A novel method for fast and accurate multiple sequence alignment. , 2000, Journal of molecular biology.

[46]  J. Kuriyan,et al.  A TOPRIM domain in the crystal structure of the catalytic core of Escherichia coli primase confirms a structural link to DNA topoisomerases. , 2000, Journal of molecular biology.

[47]  Philippe Mourrain,et al.  Arabidopsis SGS2 and SGS3 Genes Are Required for Posttranscriptional Gene Silencing and Natural Virus Resistance , 2000, Cell.

[48]  S. Bell,et al.  The Role of Transcription Factor B in Transcription Initiation and Promoter Clearance in the Archaeon Sulfolobus acidocaldarius * , 2000, The Journal of Biological Chemistry.

[49]  J. Berger,et al.  Structure of the RNA polymerase domain of E. coli primase. , 2000, Science.

[50]  P. Sharp,et al.  RNAi Double-Stranded RNA Directs the ATP-Dependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals , 2000, Cell.

[51]  S. Hammond,et al.  An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells , 2000, Nature.

[52]  S. Hahn,et al.  The zinc ribbon domains of the general transcription factors TFIIB and Brf: conserved functional surfaces but different roles in transcription initiation. , 2000, Genes & development.

[53]  T. Härd,et al.  The solution structure of ribosomal protein L36 from Thermus thermophilus reveals a zinc-ribbon-like fold. , 2000, Journal of molecular biology.

[54]  T. Steitz,et al.  Insights into transcription: structure and function of single-subunit DNA-dependent RNA polymerases. , 2000, Current opinion in structural biology.

[55]  C. Carles,et al.  A Novel Subunit of Yeast RNA Polymerase III Interacts with the TFIIB-Related Domain of TFIIIB70 , 2000, Molecular and Cellular Biology.

[56]  J. Omichinski,et al.  Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription , 2000, Protein science : a publication of the Protein Society.

[57]  E. Koonin,et al.  DNA-binding proteins and evolution of transcription regulation in the archaea. , 1999, Nucleic acids research.

[58]  M. Carmell,et al.  Posttranscriptional Gene Silencing in Plants , 2006 .

[59]  M. Van Montagu,et al.  Posttranscriptional gene silencing of gn1 in tobacco triggers accumulation of truncated gn1-derived RNA species. , 1999, RNA.

[60]  K. Severinov,et al.  Crystal Structure of Thermus aquaticus Core RNA Polymerase at 3.3 Å Resolution , 1999, Cell.

[61]  K. Mizuguchi,et al.  N-ethylmaleimide-sensitive fusion protein (NSF) and CDC48 confirmed as members of the double-psi beta-barrel aspartate decarboxylase/formate dehydrogenase family. , 1999, Structure.

[62]  Detlef D. Leipe,et al.  Did DNA replication evolve twice independently? , 1999, Nucleic acids research.

[63]  A. Fire,et al.  RNA-triggered gene silencing. , 1999, Trends in genetics : TIG.

[64]  G. Macino,et al.  Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase , 1999, Nature.

[65]  G. Wagner,et al.  Structure and interactions of the translation initiation factor eIF1 , 1999, The EMBO journal.

[66]  E. Koonin,et al.  Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. , 1999, Journal of molecular biology.

[67]  E V Koonin,et al.  DNA polymerase beta-like nucleotidyltransferase superfamily: identification of three new families, classification and evolutionary history. , 1999, Nucleic acids research.

[68]  L. Aravind,et al.  Novel Predicted RNA-Binding Domains Associated with the Translation Machinery , 1999, Journal of Molecular Evolution.

[69]  Kenji Mizuguchi,et al.  A six-stranded double-psi β barrel is shared by several protein superfamilies , 1999 .

[70]  W. Baumeister,et al.  The solution structure of VAT-N reveals a 'missing link' in the evolution of complex enzymes from a simple betaalphabetabeta element. , 1999, Current biology : CB.

[71]  T L Blundell,et al.  A six-stranded double-psi beta barrel is shared by several protein superfamilies. , 1999, Structure.

[72]  H. L. Sänger,et al.  Isolation of an RNA-Directed RNA Polymerase–Specific cDNA Clone from Tomato , 1998, Plant Cell.

[73]  D. Landsman,et al.  AT-hook motifs identified in a wide variety of DNA-binding proteins. , 1998, Nucleic acids research.

[74]  Detlef D. Leipe,et al.  Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. , 1998, Nucleic acids research.

[75]  Thomas L. Madden,et al.  Protein sequence similarity searches using patterns as seeds. , 1998, Nucleic acids research.

[76]  A. Fire,et al.  Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression. , 1998, Trends in genetics : TIG.

[77]  C. Woese The universal ancestor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[78]  A. Murzin How far divergent evolution goes in proteins. , 1998, Current opinion in structural biology.

[79]  B. Kaine,et al.  High-resolution structure of an archaeal zinc ribbon defines a general architectural motif in eukaryotic RNA polymerases. , 1998, Structure.

[80]  Chris Sander,et al.  Touring protein fold space with Dali/FSSP , 1998, Nucleic Acids Res..

[81]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[82]  Peter Willett,et al.  A polymerase I palm in adenylyl cyclase? , 1997, Nature.

[83]  Eugene V. Koonin,et al.  SEALS: A System for Easy Analysis of Lots of Sequences , 1997, ISMB.

[84]  D. Lipman,et al.  Extracting protein alignment models from the sequence database. , 1997, Nucleic acids research.

[85]  T R Hughes,et al.  Reverse transcriptase motifs in the catalytic subunit of telomerase. , 1997, Science.

[86]  June Corwin,et al.  Telomerase Catalytic Subunit Homologs from Fission Yeast and Human , 1997 .

[87]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[88]  Chris Sander,et al.  Dali/FSSP classification of three-dimensional protein folds , 1997, Nucleic Acids Res..

[89]  P. Sigler,et al.  Structure of the oligomerization and L-arginine binding domain of the arginine repressor of Escherichia coli. , 1996, Journal of molecular biology.

[90]  Chris Sander,et al.  DNA polymerase β belongs to an ancient nucleotidyltransferase superfamily , 1995 .

[91]  P. Thuriaux,et al.  A universally conserved region of the largest subunit participates in the active site of RNA polymerase III. , 1995, The EMBO journal.

[92]  Jun S. Liu,et al.  Gibbs motif sampling: Detection of bacterial outer membrane protein repeats , 1995, Protein science : a publication of the Protein Society.

[93]  P. Baumann,et al.  Transcription: new insights from studies on Archaea. , 1995, Trends in genetics : TIG.

[94]  E. Koonin,et al.  Identification of the Primase Active Site of the Herpes Simplex Virus Type 1 Helicase-Primase (*) , 1995, The Journal of Biological Chemistry.

[95]  C Sander,et al.  DNA polymerase beta belongs to an ancient nucleotidyltransferase superfamily. , 1995, Trends in biochemical sciences.

[96]  John C. Wootton,et al.  Non-globular Domains in Protein Sequences: Automated Segmentation Using Complexity Measures , 1994, Comput. Chem..

[97]  A. Passarelli,et al.  A baculovirus gene involved in late gene expression predicts a large polypeptide with a conserved motif of RNA polymerases , 1994, Journal of virology.

[98]  Burkhard Rost,et al.  PHD - an automatic mail server for protein secondary structure prediction , 1994, Comput. Appl. Biosci..

[99]  A. Passarelli,et al.  Identification of genes encoding late expression factors located between 56.0 and 65.4 map units of the Autographa californica nuclear polyhedrosis virus genome. , 1993, Virology.

[100]  B. Rost,et al.  Prediction of protein secondary structure at better than 70% accuracy. , 1993, Journal of molecular biology.

[101]  H. L. Sänger,et al.  RNA-directed RNA polymerase from tomato leaves. I. Purification and physical properties. , 1993, The Journal of biological chemistry.

[102]  Alexey G. Murzin Familiar Strangers , 2019, Twelve Weeks to Change a Life.

[103]  P. Kraulis Similarity of protein G and ubiquitin. , 1991, Science.

[104]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[105]  G D Schuler,et al.  A workbench for multiple alignment construction and analysis , 1991, Proteins.

[106]  P Argos,et al.  An attempt to unify the structure of polymerases. , 1990, Protein engineering.

[107]  I Sauvaget,et al.  Identification of four conserved motifs among the RNA‐dependent polymerase encoding elements. , 1989, The EMBO journal.

[108]  P Argos,et al.  A sequence motif in many polymerases. , 1988, Nucleic acids research.

[109]  R. Young,et al.  Prokaryotic and eukaryotic RNA polymerases have homologous core subunits. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[110]  P. Argos,et al.  Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. , 1984, Nucleic acids research.

[111]  A. Lehninger Principles of Biochemistry , 1984 .

[112]  P. Kitcher Species , 1984, Philosophy of Science.

[113]  H. Fraenkel-conrat,et al.  Characterization of the RNA-dependent RNA polymerase of tobacco leaves. , 1979, The Journal of biological chemistry.

[114]  S. Astier-Manifacier,et al.  RNA-dependent RNA polymerase in Chinese cabbage. , 1971, Biochimica et biophysica acta.

[115]  S. Astier-Manifacier,et al.  [RNA-dependent RNA-polymerase in Brassica chinensis L]. , 1970, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles.