Preserving the photometric integrity of companions in high-contrast imaging observations using locally optimized combination of images

Direct imaging and spectroscopy can advance our understanding of planet formation and migration through the detection and characterization of extrasolar planets on wide orbits. Accurate photometry and astrometry of detected companions are of crucial importance to derive the planet physical properties.We present an extension of the Locally optimized combination of images (LOCI) method to measure the highest-fidelity photometry as well as accurate astrometry of detected companions. This algorithm is also generalized to Integral-Field Spectrograph (IFS) data processing, giving advantages of a simultaneous angular and spectral differential imaging reduction, retrieving high-fidelity spectra from PSF-subtracted cubes.

[1]  B. Oppenheimer,et al.  Astrometry and Photometry with Coronagraphs , 2006, astro-ph/0606136.

[2]  Laurent Jolissaint,et al.  Adaptive optics point spread function reconstruction: lessons learned from on-sky experiment on Altair/Gemini and pathway for future systems , 2010, Astronomical Telescopes + Instrumentation.

[3]  Etienne Artigau,et al.  A New Algorithm for Point-Spread Function Subtraction in High-Contrast Imaging: A Demonstration with Angular Differential Imaging , 2007, astro-ph/0702697.

[4]  Bruce A. Macintosh,et al.  The Gemini Planet Imager: from science to design to construction , 2008, Astronomical Telescopes + Instrumentation.

[5]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[6]  Eric Gendron,et al.  New algorithms for adaptive optics point-spread function reconstruction , 2006 .

[7]  Amokrane Berdja,et al.  Multi-instrument measurement campaign at Paranal in 2007 - Characterization of the outer scale and the seeing of the surface layer , 2010 .

[8]  Laurent Jolissaint,et al.  OPERA, an automatic PSF reconstruction software for Shack-Hartmann AO systems: application to Altair , 2004, SPIE Astronomical Telescopes + Instrumentation.

[9]  Russell B. Makidon,et al.  The Structure of High Strehl Ratio Point-Spread Functions , 2003 .

[10]  Jean-Pierre Véran,et al.  Optimal modal fourier-transform wavefront control. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  O. Szewczyk,et al.  Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing , 2006, Nature.

[12]  C. Marois,et al.  Accurate Astrometry and Photometry of Saturated and Coronagraphic Point Spread Functions , 2006, astro-ph/0604256.

[13]  Henri Maitre,et al.  Estimation of the adaptive optics long-exposure point spread function using control loop data: recent developments , 1997, Optics & Photonics.

[14]  A. Boccaletti,et al.  A Giant Planet Imaged in the Disk of the Young Star β Pictoris , 2010, Science.

[15]  Rene Doyon,et al.  Ground-Based Direct Detection of Exoplanets with the Gemini Planet Imager (GPI) , 2007 .

[16]  Jean-Pierre Véran,et al.  Wavefront control for the Gemini Planet Imager , 2006, SPIE Astronomical Telescopes + Instrumentation.

[17]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[18]  C. Marois,et al.  Efficient Speckle Noise Attenuation in Faint Companion Imaging , 2000 .

[19]  C. Fabron,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[20]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[21]  Ian R. Parry,et al.  A Data-Cube Extraction Pipeline for a Coronagraphic Integral Field Spectrograph , 2011, 1104.5233.

[22]  L. Jolissaint Synthetic Modeling of Astronomical Closed Loop Adaptive Optics , 2010, 1009.1581.

[23]  Julien H. Girard,et al.  High angular resolution detection of β Pictoris b at 2.18 μm , 2011 .

[24]  Bruce Macintosh,et al.  Speckle lifetimes in high-contrast adaptive optics , 2005, SPIE Optics + Photonics.

[25]  Jean-Pierre Véran,et al.  Fourier transform wavefront control with adaptive prediction of the atmosphere. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[27]  R Conan,et al.  From the grating scale monitor to the generalized seeing monitor. , 2000, Applied optics.

[28]  James R. Graham,et al.  Speckle Statistics in Adaptively Corrected Images , 2006 .

[29]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[30]  David Lafreniere,et al.  THE DIRECTLY IMAGED PLANET AROUND THE YOUNG SOLAR ANALOG 1RXS J160929.1 − 210524: CONFIRMATION OF COMMON PROPER MOTION, TEMPERATURE, AND MASS , 2010, 1006.3070.

[31]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[32]  R. Soummer,et al.  ORBITAL MOTION OF HR 8799 b, c, d USING HUBBLE SPACE TELESCOPE DATA FROM 1998: CONSTRAINTS ON INCLINATION, ECCENTRICITY, AND STABILITY , 2011, 1110.1382.