Superconducting X-ray detectors

Owing to their high sensitivity and low noise, superconducting detectors are used for photon detection from microwave to high-energy particles. X-ray detection plays an important role in materials analysis, astronomy, and medical radiography, which require high efficiency as well as high energy resolution. However, traditional semiconducting detectors cannot fulfill these requirements. In this article, we review superconducting quantum detectors for X-ray detection, including transition-edge sensor (TES), superconducting tunneling junctions (STJs), kinetic inductance detectors (KIDs) and superconducting nanowire single-photon detectors (SNSPDs), and introduce the physical structures, working mechanisms, and device behaviors of these detectors. We also review their performances regarding X-ray detection and analyze their respective characteristics. According to recent progress and the requirements of various applications, possible improvement of superconducting detectors for X-rays are discussed.

[1]  Fiona A. Harrison,et al.  Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors , 2006 .

[2]  V. A. Andrianov Comment on “Observation of nuclear gamma resonance with superconducting tunnel junction detectors” [AIP Advances 6, 025315 (2016)] , 2019, AIP Advances.

[3]  John M. Martinis,et al.  Thermal-response time of superconducting transition-edge microcalorimeters , 1998 .

[4]  Twerenbold Nonequilibrium model of the superconducting tunneling junction x-ray detector. , 1986, Physical review. B, Condensed matter.

[5]  Simon R. Bandler,et al.  Large‐Absorber TES X‐ray Microcalorimeters and the Micro‐X Detector Array , 2009 .

[6]  G. Hilton,et al.  X‐ray detection using a superconducting transition‐edge sensor microcalorimeter with electrothermal feedback , 1996 .

[7]  W. B. Doriese,et al.  Electrical and optical measurements on the first SCUBA-2 prototype 1280 pixel submillimeter superconducting bolometer array. , 2007, The Review of scientific instruments.

[8]  A. Cruciani,et al.  Thermal kinetic inductance detectors for soft X-ray spectroscopy , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[9]  Stephan Friedrich,et al.  112-Pixel Arrays of High-Efficiency STJ X-Ray Detectors , 2013 .

[10]  Johnathon D. Gard,et al.  Dependence of transition width on current and critical current in transition-edge sensors , 2017 .

[11]  Simon Doyle,et al.  Kinetic inductance detectors for 200μm astronomy , 2006, SPIE Astronomical Telescopes + Instrumentation.

[12]  Heike Soltau,et al.  Silicon drift detectors for high count rate X-ray spectroscopy at room temperature , 2001 .

[13]  Adrian T. Lee,et al.  Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors , 2001 .

[14]  Adrian T. Lee,et al.  APEX-SZ first light and instrument status , 2006 .

[15]  Jörn Beyer,et al.  Code-division multiplexing of superconducting transition-edge sensor arrays , 2010 .

[16]  A. Schilling,et al.  Superconducting single X-ray photon detector based on W0.8Si0.2 , 2016, 1608.02347.

[17]  Xiaofu Zhang Characteristics of tungsten silicide and its application for single X-ray photon detection , 2018 .

[18]  Yoshinori Uzawa,et al.  NbN/AlN/NbN tunnel junctions with high current density up to 54 kA/cm2 , 1997 .

[19]  Kenneth E. Gray,et al.  A superconducting transistor , 1978 .

[20]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[21]  Heike Soltau,et al.  Silicon drift detectors for high resolution room temperature X-ray spectroscopy , 1996 .

[22]  Mary J. Li,et al.  Impedance measurements and modeling of a transition-edge-sensor calorimeter , 2004 .

[23]  Masataka Ohkubo,et al.  Modification of Layer Structures of Superconducting Tunnel Junctions to Improve X-ray Energy Resolution , 2016 .

[24]  G. H. Wood,et al.  Pulses induced in tunneling currents between superconductors by alpha-particle bombardment , 1969 .

[25]  T. M. Klapwijk,et al.  Noise and Sensitivity of Aluminum Kinetic Inductance Detectors for Sub-mm Astronomy , 2008 .

[26]  Peter A. R. Ade,et al.  The South Pole Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[27]  Guo Guangcan SUPERCONDUCTING SINGLE-PHOTON DETECTION , 2007 .

[28]  Erik Lucero,et al.  Microwave dielectric loss at single photon energies and millikelvin temperatures , 2008, 0802.2404.

[29]  Kent D. Irwin,et al.  Microwave SQUID multiplexer , 2004 .

[30]  J. R. Schrieffer Theory of Superconductivity , 1965 .

[31]  G. V. Chester,et al.  The Law of Wiedemann and Franz , 1961 .

[32]  G. Hilton,et al.  Development of a Microwave SQUID-Multiplexed TES Array for MUSTANG-2 , 2016 .

[33]  V. G. Kogan,et al.  Vortex-induced dissipation in narrow current-biased thin-film superconducting strips , 2010, 1102.5130.

[34]  L. Cooper,et al.  Theory of superconductivity , 1957 .

[35]  H. R. O'Neal,et al.  LOW-TEMPERATURE HEAT CAPCITIES OF INDIUM AND TIN. , 1964 .

[36]  Bruce Bumble,et al.  A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics. , 2012, Optics express.

[37]  Samuel Harvey Moseley,et al.  Performance of multiplexed SQUID readout for Cryogenic Sensor Arrays , 2000 .

[38]  C. M. Natarajan,et al.  Superconducting nanowire single-photon detectors: physics and applications , 2012, 1204.5560.

[39]  Roman Sobolewski,et al.  TOPICAL REVIEW: Hot-electron effect in superconductors and its applications for radiation sensors , 2002 .

[40]  Alex I. Braginski,et al.  The SQUID handbook , 2006 .

[41]  C. Otani,et al.  High Energy Gamma-Ray Spectroscopy Using Transition-Edge Sensor With a Superconducting Bulk Tantalum Absorber , 2015, IEEE Transactions on Applied Superconductivity.

[42]  L. V. Filippenko,et al.  STJ X-ray detectors with titanium sublayer , 2004 .

[43]  Josef Jochum,et al.  Energy resolution of 12 eV at 5.9 keV from Al-superconducting tunnel junction detectors , 2001 .

[44]  K. Delin,et al.  Foundations of Applied Superconductivity , 1991 .

[45]  K. Irwin,et al.  A self-biasing cryogenic particle detector utilizing electrothermal feedback and a SQUID readout , 1995, IEEE Transactions on Applied Superconductivity.

[46]  Ron Jenkins,et al.  Introduction to X-ray Powder Diffractometry: Jenkins/Introduction , 1996 .

[47]  G. Fraser X-ray Detectors in Astronomy , 1989 .

[48]  Paul Szypryt,et al.  Highly Multiplexible Thermal Kinetic Inductance Detectors for X-Ray Imaging Spectroscopy , 2015 .

[49]  Bradley Dober,et al.  Simultaneous readout of 128 X-ray and gamma-ray transition-edge microcalorimeters using microwave SQUID multiplexing , 2017 .

[50]  L. V. Filippenko,et al.  Observation of nuclear gamma resonance with superconducting tunnel junction detectors , 2016 .

[51]  Stephen J. Smith,et al.  Multiabsorber transition-edge sensors for x-ray astronomy , 2019 .

[52]  D. T. Vo,et al.  14-pixel, multiplexed array of gamma-ray microcalorimeters with 47 eV energy resolution at 103 keV , 2007 .

[53]  A. Giachero,et al.  Development of Thermal Kinetic Inductance Detectors Suitable for X-ray Spectroscopy , 2017, Journal of Low Temperature Physics.

[54]  Pavel Rehak,et al.  Semiconductor drift chamber: an application of a novel charge transport scheme , 1984 .

[55]  Heinz Lübbig,et al.  Superconducting Devices and Their Applications , 1992 .

[56]  Markus Rösch,et al.  Development of lumped element kinetic inductance detectors for mm-wave astronomy at the IRAM 30 m telescope , 2014 .

[57]  K. Irwin An application of electrothermal feedback for high resolution cryogenic particle detection , 1995 .

[58]  Ron Jenkins,et al.  Introduction to X-ray powder diffractometry , 1996 .

[59]  John M. Martinis,et al.  Superconducting transition-edge-microcalorimeter X-ray spectrometer with 2eV energy resolution at 1.5keV , 2000 .

[60]  Konstantin Il'in,et al.  An ultra-fast superconducting Nb nanowire single-photon detector for soft x-rays , 2012, 1208.1656.

[61]  Simon R. Bandler,et al.  Fine pitch transition-edge sensor X-ray microcalorimeters with sub-eV energy resolution at 1.5 keV , 2015 .

[62]  Mark A. Lindeman,et al.  Microcalorimetry and the transition-edge sensor , 2000 .

[63]  P. Mauskopf,et al.  Lumped Element Kinetic Inductance Detectors , 2008 .

[64]  M. Siegel,et al.  Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips , 2005 .

[65]  Jörn Beyer,et al.  Code-division SQUID multiplexing , 2010 .

[66]  Dominic J. Benford,et al.  Multiplexed Readout of Superconducting Bolometers , 2000 .

[67]  B. Vojnovic Advanced Time‐Correlated Single Photon Counting Techniques , 2006 .

[68]  Jonas Zmuidzinas,et al.  Noise properties of superconducting coplanar waveguide microwave resonators , 2006, cond-mat/0609614.

[69]  W. Williams,et al.  The Physics of Medical X-Ray Imaging , 1991 .

[70]  Alexander Korneev,et al.  Quantum detection by current carrying superconducting film , 2001 .

[71]  Harald W. Weber,et al.  Structure and Properties of MgB2 Bulks, Thin Films, and Wires , 2017, IEEE Transactions on Applied Superconductivity.

[72]  O. Okunev,et al.  Picosecond superconducting single-photon optical detector , 2001 .

[73]  Adrian T. Lee,et al.  The EBEX experiment , 2004, SPIE Optics + Photonics.

[74]  D. J. Goldie,et al.  Single optical photon detection with a superconducting tunnel junction , 1996, Nature.

[75]  G. J. Sellers,et al.  Anomalous heat capacities of niobium and tantalum below 1 K , 1974 .

[76]  H. Suhl,et al.  Bardeen-Cooper-Schrieffer Theory of Superconductivity in the Case of Overlapping Bands , 1959 .

[77]  G. Hilton,et al.  Time-division superconducting quantum interference device multiplexer for transition-edge sensors , 2003 .

[78]  E. Justi,et al.  Supraleitfähige Verbindungen mit extrem hohen Sprungtemperaturen (NbH und NbN) , 1943 .

[79]  Roberto Cesareo,et al.  X-Ray fluorescence spectrometry , 2002 .

[80]  P. Lerch,et al.  Quantum Giaever Detectors: STJ's , 2005 .

[81]  John Bardeen Field Variation of Superconducting Penetration Depth , 1951 .

[82]  Adrian T. Lee,et al.  High-resolution operation of frequency-multiplexed transition-edge photon sensors , 2002 .

[83]  Boris Korzh,et al.  High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors , 2017, 1710.06740.

[84]  Zizhao Gan,et al.  Lumped element kinetic inductance detectors based on two-gap MgB2 thin films , 2018 .

[85]  A. N. Zotova,et al.  Photon detection by current-carrying superconducting film: A time-dependent Ginzburg-Landau approach , 2011, 1112.3790.

[86]  Sang Boo Nam,et al.  Theory of Electromagnetic Properties of Superconducting and Normal Systems. I , 1967 .

[87]  H. Alloul Introduction to Superconductivity , 2011 .

[88]  Kock,et al.  Paramagnetic Meissner effect in Bi high-temperature superconductors. , 1992, Physical review letters.

[89]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[90]  D. J. Thoen,et al.  Ultrasensitive Kilo-Pixel Imaging Array of Photon Noise-Limited Kinetic Inductance Detectors Over an Octave of Bandwidth for THz Astronomy , 2018, Journal of Low Temperature Physics.

[91]  Joel N. Ullom,et al.  Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy , 2015 .

[92]  John A. B. Mates,et al.  The Microwave SQUID Multiplexer , 2011 .

[93]  V. Anant,et al.  Modeling the Electrical and Thermal Response of Superconducting Nanowire Single-Photon Detectors , 2007, IEEE Transactions on Applied Superconductivity.

[94]  Jonas Zmuidzinas,et al.  Antenna-coupled microwave kinetic inductance detectors , 2006 .

[95]  G. C. Hilton,et al.  An Overhanging Absorber for TES X-Ray Focal Planes , 2017, IEEE Transactions on Applied Superconductivity.

[96]  Simon R. Bandler,et al.  Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics , 2012 .

[97]  D. H. Andrews,et al.  Superconducting Films as Radiometric Receivers , 1941 .

[98]  B. Sadoulet,et al.  Disk Resonator Design for Kinetic Inductance Detectors , 2018, Journal of Low Temperature Physics.

[99]  A. Fiore,et al.  Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector. , 2014, Physical review letters.

[100]  Steven M. Anlage,et al.  The physics and applications of superconducting metamaterials , 2010, 1004.3226.

[101]  K. Irwin Phonon-mediated particle detection using superconducting tungsten transition-edge sensors , 1995 .

[102]  Andrew S. Hoover,et al.  Integration of TES Microcalorimeters With Microwave SQUID Multiplexed Readout , 2015, IEEE Transactions on Applied Superconductivity.

[103]  John M. Martinis,et al.  High‐resolution, energy‐dispersive microcalorimeter spectrometer for X‐ray microanalysis , 1997 .

[104]  C. Otani,et al.  Development of Hard X-ray and Gamma-ray Detector With Transition Edge Sensor for Nuclear Materials Analysis , 2015, IEEE Transactions on Applied Superconductivity.

[105]  Faraz Najafi,et al.  Single-photon detectors based on ultranarrow superconducting nanowires. , 2010, Nano letters.

[106]  Ron Jenkins,et al.  X-Ray Fluorescence Spectrometry: Jenkins/X-Ray , 1999 .

[107]  Jonas Zmuidzinas,et al.  Superconducting Microresonators: Physics and Applications , 2012 .

[108]  J. N. Ullom,et al.  Thermal Conductance Engineering for High-Speed TES Microcalorimeters , 2016 .

[109]  Masato Murakami,et al.  High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K , 2003, Nature.

[110]  Blas Cabrera,et al.  Phonon-Mediated Detection of Alpha Particles with Aluminum Transition Edge Sensors , 1987 .

[111]  P. K. Daya,et al.  Antenna-coupled microwave kinetic inductance detectors , 2006 .

[112]  K. Irwin,et al.  Superconducting multiplexer for arrays of transition edge sensors , 1999 .

[113]  Benjamin A. Mazin,et al.  Microwave Kinetic Inductance Detectors , 2005, The WSPC Handbook of Astronomical Instrumentation.

[114]  M. Kurakado,et al.  Review on Superconducting Tunnel Junctions as Ionizing-Radiation Detectors , 1992 .

[115]  Kang Kejun Review of X-ray Security Inspection Technology , 2004 .

[116]  Veerle Cnudde,et al.  High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications , 2013 .

[117]  Michael Siegel,et al.  Ultimate performance of a superconducting quantum detector , 2003 .

[118]  P. Verhoeve,et al.  Imaging soft x-ray spectrometers based on superconducting tunnel junctions , 2010, Astronomical Telescopes + Instrumentation.

[119]  M. W. P. Strandberg,et al.  Excess Noise in Superconducting Bolometers , 1969 .

[120]  Victor V. Samedov,et al.  Influence of the proximity effect on the energy resolution of STJs , 2004 .

[121]  G. Hilton,et al.  Transition-Edge Sensors , 2005 .

[122]  Lev P. Gor'kov,et al.  Microscopic derivation of the Ginzburg--Landau equations in the theory of superconductivity , 1959 .