KAM for Beating Solutions of the Quintic NLS

[1]  M. Procesi,et al.  Finite dimensional invariant KAM tori for tame vector fields , 2016, Transactions of the American Mathematical Society.

[2]  C. Procesi,et al.  Reducible quasi-periodic solutions for the non linear Schrödinger equation , 2015, 1504.00564.

[3]  L. Chierchia,et al.  On the measure of Lagrangian invariant tori in nearly--integrable mechanical systems (draft) , 2015, 1503.08145.

[4]  M. Procesi,et al.  Growth of Sobolev norms for the quintic NLS on T 2 , 2014, 1405.1538.

[5]  N. Tzvetkov,et al.  MODIFIED SCATTERING FOR THE CUBIC SCHRÖDINGER EQUATION ON PRODUCT SPACES AND APPLICATIONS , 2013, Forum of Mathematics, Pi.

[6]  C. Procesi,et al.  A KAM algorithm for the resonant non-linear Schrödinger equation , 2012, 1211.4242.

[7]  Laurent Thomann,et al.  Dynamics on resonant clusters for the quintic non linear Schrodinger equation , 2012, 1210.7291.

[8]  Laurent Thomann,et al.  Beating effects in cubic Schrödinger systems and growth of Sobolev norms , 2012, 1208.5680.

[9]  V. Kaloshin,et al.  Growth of Sobolev norms in the cubic defocusing nonlinear Schr\"odinger equation , 2012 .

[10]  C. Procesi,et al.  The energy graph of the non-linear Schrödinger equation , 2012, 1205.1751.

[11]  B. Grébert,et al.  Resonant dynamics for the quintic nonlinear Schrödinger equation , 2011, 1111.6827.

[12]  Luca Biasco,et al.  KAM theory for the Hamiltonian derivative wave equation , 2011, 1111.3905.

[13]  Michela Procesi,et al.  Quasi-Töplitz Functions in KAM Theorem , 2011, SIAM J. Math. Anal..

[14]  C. Procesi,et al.  A Normal Form for the Schrödinger Equation with Analytic Non-linearities , 2010, 1012.0446.

[15]  Sergei Kuksin,et al.  KAM for the nonlinear Schrödinger equation , 2010 .

[16]  L. Biasco,et al.  A Birkhoff–Lewis Type Theorem for the Nonlinear Wave Equation , 2010 .

[17]  T. Tao,et al.  Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation , 2010 .

[18]  Yingfei Yi,et al.  Quasi-periodic solutions in a nonlinear Schrödinger equation , 2007 .

[19]  Dario Bambusi,et al.  A Birkhoff-Lewis-Type Theorem for Some Hamiltonian PDEs , 2003, SIAM J. Math. Anal..

[20]  Dario Bambusi,et al.  Birkhoff Normal Form for Some Nonlinear PDEs , 2003 .

[21]  Jean Bourgain,et al.  On diffusion in high-dimensional Hamiltonian systems and PDE , 2000 .

[22]  Luigi Chierchia,et al.  KAM Tori for 1D Nonlinear Wave Equations¶with Periodic Boundary Conditions , 1999, chao-dyn/9904036.

[23]  Jean Bourgain,et al.  Construction of approximative and almost periodic solutions of perturbed linear schrödinger and wave equations , 1996 .

[24]  J. Bourgain,et al.  Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , 1993 .

[25]  C. Eugene Wayne,et al.  Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory , 1990 .

[26]  Sergei Kuksin,et al.  Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum , 1987 .

[27]  Monte S. Angelo,et al.  Growth of Sobolev norms for the defocusing analytic NLS on T 2 , 2015 .

[28]  J. Pöschel,et al.  Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrodinger equation , 1996 .

[29]  Jean Bourgain,et al.  Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE , 1994 .