Fast Laplace Transform Methods for Free-Boundary Problems of Fractional Diffusion Equations
暂无分享,去创建一个
[1] P. Carr,et al. The Finite Moment Log Stable Process and Option Pricing , 2003 .
[2] Dongwoo Sheen,et al. A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature , 2003 .
[3] M. Meerschaert,et al. Finite difference approximations for fractional advection-dispersion flow equations , 2004 .
[4] Hai-Wei Sun,et al. Shift-Invert Arnoldi Approximation to the Toeplitz Matrix Exponential , 2010, SIAM J. Sci. Comput..
[5] Vidar Thomée,et al. Time discretization via Laplace transformation of an integro-differential equation of parabolic type , 2006, Numerische Mathematik.
[6] Raymond H. Chan,et al. An Introduction to Iterative Toeplitz Solvers (Fundamentals of Algorithms) , 2007 .
[7] Artur Sepp,et al. Analytical Pricing of Double-Barrier Options under a Double-Exponential Jump Diffusion Process: Applications of Laplace Transform , 2003 .
[8] Louis A. Schmittroth,et al. Numerical inversion of Laplace transforms , 1960, Commun. ACM.
[9] Song-Ping Zhu,et al. A New Analytical-Approximation Formula for the Optimal Exercise Boundary of American Put Options , 2006 .
[10] J. A. C. Weideman,et al. Improved contour integral methods for parabolic PDEs , 2010 .
[11] Steven Kou,et al. Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model , 2012, Oper. Res..
[12] Vadim Linetsky,et al. Pricing and Hedging Path-Dependent Options Under the CEV Process , 2001, Manag. Sci..
[13] I. Podlubny. Fractional differential equations , 1998 .
[14] Song-Ping Zhu,et al. Analytically pricing European-style options under the modified Black-Scholes equation with a spatial-fractional derivative , 2014 .
[15] V. Thomée,et al. Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation , 2010 .
[16] Dongwoo Sheen,et al. A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature , 2000, Math. Comput..
[17] K. J. in 't Hout,et al. A Contour Integral Method for the Black-Scholes and Heston Equations , 2009, SIAM J. Sci. Comput..
[18] J. Diard,et al. Numerical inversion of Laplace transforms.: A useful tool for evaluation of chemical diffusion coefficients in ion-insertion electrodes investigated by PITT , 2007 .
[19] P. Carr. Randomization and the American Put , 1996 .
[20] Jaemin Ahn,et al. A Laplace transform finite difference method for the Black-Scholes equation , 2010, Math. Comput. Model..
[21] Hyoseop Lee,et al. Laplace transformation method for the Black-Scholes equation , 2009, 0901.4604.
[22] Paolo Tilli. Singular values and eigenvalues of non-hermitian block Toeplitz matrices , 1996 .
[23] M. Meerschaert,et al. Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .
[24] Xinfu Chen,et al. A Mathematical Analysis of the Optimal Exercise Boundary for American Put Options , 2007, SIAM J. Math. Anal..
[25] Jing Zhao,et al. Valuing American options under the CEV model by Laplace-Carson transforms , 2010, Oper. Res. Lett..
[26] Toshikazu Kimura,et al. Valuing finite-lived Russian options , 2008, Eur. J. Oper. Res..
[27] Chi Seng Pun,et al. CEV Asymptotics of American Options , 2013 .
[28] Lloyd N. Trefethen,et al. Parabolic and hyperbolic contours for computing the Bromwich integral , 2007, Math. Comput..
[29] A. Talbot. The Accurate Numerical Inversion of Laplace Transforms , 1979 .
[30] V. Thomée,et al. Numerical solution via Laplace transforms of a fractional order evolution equation , 2010 .
[31] R. Chan,et al. An Introduction to Iterative Toeplitz Solvers , 2007 .
[32] Miao Xu,et al. On a free boundary problem for an American put option under the CEV process , 2011, Appl. Math. Lett..
[33] Hai-Wei Sun,et al. Fast Numerical Contour Integral Method for Fractional Diffusion Equations , 2016, J. Sci. Comput..
[34] Hyoseop Lee,et al. Laplace Transform Method for Parabolic Problems with Time-Dependent Coefficients , 2013, SIAM J. Numer. Anal..
[35] Markus Leippold,et al. Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model , 2015 .
[36] Steven Kou,et al. Option Pricing Under a Mixed-Exponential Jump Diffusion Model , 2011, Manag. Sci..
[37] V. Thomée,et al. Time discretization of an evolution equation via Laplace transforms , 2004 .
[38] HYOSEOP LEE. NUMERICAL APPROXIMATION OF OPTION PRICING MODEL UNDER JUMP DIFFUSION USING THE LAPLACE TRANSFORMATION METHOD , 2009 .
[39] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[40] Antoon Pelsser,et al. Pricing double barrier options using Laplace transforms , 2000, Finance Stochastics.
[41] Steven Kou,et al. Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..