Fast Laplace Transform Methods for Free-Boundary Problems of Fractional Diffusion Equations

In this paper we develop a fast Laplace transform method for solving a class of free-boundary fractional diffusion equations arising in the American option pricing. Instead of using the time-stepping methods, we develop the Laplace transform methods for solving the free-boundary fractional diffusion equations. By approximating the free boundary, the Laplace transform is taken on a fixed space region to replace discretizing the temporal variable. The hyperbola contour integral method is exploited to restore the option values. Meanwhile, the coefficient matrix has theoretically proven to be sectorial. Therefore, the highly accurate approximation by the fast Laplace transform method is guaranteed. The numerical results confirm that the proposed method outperforms the full finite difference methods in regard to the accuracy and complexity.

[1]  P. Carr,et al.  The Finite Moment Log Stable Process and Option Pricing , 2003 .

[2]  Dongwoo Sheen,et al.  A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature , 2003 .

[3]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[4]  Hai-Wei Sun,et al.  Shift-Invert Arnoldi Approximation to the Toeplitz Matrix Exponential , 2010, SIAM J. Sci. Comput..

[5]  Vidar Thomée,et al.  Time discretization via Laplace transformation of an integro-differential equation of parabolic type , 2006, Numerische Mathematik.

[6]  Raymond H. Chan,et al.  An Introduction to Iterative Toeplitz Solvers (Fundamentals of Algorithms) , 2007 .

[7]  Artur Sepp,et al.  Analytical Pricing of Double-Barrier Options under a Double-Exponential Jump Diffusion Process: Applications of Laplace Transform , 2003 .

[8]  Louis A. Schmittroth,et al.  Numerical inversion of Laplace transforms , 1960, Commun. ACM.

[9]  Song-Ping Zhu,et al.  A New Analytical-Approximation Formula for the Optimal Exercise Boundary of American Put Options , 2006 .

[10]  J. A. C. Weideman,et al.  Improved contour integral methods for parabolic PDEs , 2010 .

[11]  Steven Kou,et al.  Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model , 2012, Oper. Res..

[12]  Vadim Linetsky,et al.  Pricing and Hedging Path-Dependent Options Under the CEV Process , 2001, Manag. Sci..

[13]  I. Podlubny Fractional differential equations , 1998 .

[14]  Song-Ping Zhu,et al.  Analytically pricing European-style options under the modified Black-Scholes equation with a spatial-fractional derivative , 2014 .

[15]  V. Thomée,et al.  Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation , 2010 .

[16]  Dongwoo Sheen,et al.  A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature , 2000, Math. Comput..

[17]  K. J. in 't Hout,et al.  A Contour Integral Method for the Black-Scholes and Heston Equations , 2009, SIAM J. Sci. Comput..

[18]  J. Diard,et al.  Numerical inversion of Laplace transforms.: A useful tool for evaluation of chemical diffusion coefficients in ion-insertion electrodes investigated by PITT , 2007 .

[19]  P. Carr Randomization and the American Put , 1996 .

[20]  Jaemin Ahn,et al.  A Laplace transform finite difference method for the Black-Scholes equation , 2010, Math. Comput. Model..

[21]  Hyoseop Lee,et al.  Laplace transformation method for the Black-Scholes equation , 2009, 0901.4604.

[22]  Paolo Tilli Singular values and eigenvalues of non-hermitian block Toeplitz matrices , 1996 .

[23]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[24]  Xinfu Chen,et al.  A Mathematical Analysis of the Optimal Exercise Boundary for American Put Options , 2007, SIAM J. Math. Anal..

[25]  Jing Zhao,et al.  Valuing American options under the CEV model by Laplace-Carson transforms , 2010, Oper. Res. Lett..

[26]  Toshikazu Kimura,et al.  Valuing finite-lived Russian options , 2008, Eur. J. Oper. Res..

[27]  Chi Seng Pun,et al.  CEV Asymptotics of American Options , 2013 .

[28]  Lloyd N. Trefethen,et al.  Parabolic and hyperbolic contours for computing the Bromwich integral , 2007, Math. Comput..

[29]  A. Talbot The Accurate Numerical Inversion of Laplace Transforms , 1979 .

[30]  V. Thomée,et al.  Numerical solution via Laplace transforms of a fractional order evolution equation , 2010 .

[31]  R. Chan,et al.  An Introduction to Iterative Toeplitz Solvers , 2007 .

[32]  Miao Xu,et al.  On a free boundary problem for an American put option under the CEV process , 2011, Appl. Math. Lett..

[33]  Hai-Wei Sun,et al.  Fast Numerical Contour Integral Method for Fractional Diffusion Equations , 2016, J. Sci. Comput..

[34]  Hyoseop Lee,et al.  Laplace Transform Method for Parabolic Problems with Time-Dependent Coefficients , 2013, SIAM J. Numer. Anal..

[35]  Markus Leippold,et al.  Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model , 2015 .

[36]  Steven Kou,et al.  Option Pricing Under a Mixed-Exponential Jump Diffusion Model , 2011, Manag. Sci..

[37]  V. Thomée,et al.  Time discretization of an evolution equation via Laplace transforms , 2004 .

[38]  HYOSEOP LEE NUMERICAL APPROXIMATION OF OPTION PRICING MODEL UNDER JUMP DIFFUSION USING THE LAPLACE TRANSFORMATION METHOD , 2009 .

[39]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[40]  Antoon Pelsser,et al.  Pricing double barrier options using Laplace transforms , 2000, Finance Stochastics.

[41]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..