GDF v2.0, an enhanced version of GDF

An improved version of the function estimation program GDF is presented. The main enhancements of the new version include: multi-output function estimation, capability of defining custom functions in the grammar and selection of the error function. The new version has been evaluated on a series of classification and regression datasets, that are widely used for the evaluation of such methods. It is compared to two known neural networks and outperforms them in 5 (out of 10) datasets.

[1]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[2]  Hisao Ishibuchi,et al.  Multi-objective genetic local search algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[3]  Michael T. Manry,et al.  Surface parameter retrieval using fast learning neural networks , 1993 .

[4]  Kamal Sarabandi,et al.  An empirical model and an inversion technique for radar scattering from bare soil surfaces , 1992, IEEE Trans. Geosci. Remote. Sens..

[5]  Michael T. Manry,et al.  Inversion of Surface Parameters Using Fast Learning Neural Networks , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[6]  M. J. D. Powell,et al.  A tolerant algorithm for linearly constrained optimization calculations , 1989, Math. Program..

[7]  Adrian K. Fung,et al.  Backscattering from a randomly rough dielectric surface , 1992, IEEE Trans. Geosci. Remote. Sens..

[8]  M. O'Neill,et al.  Grammatical evolution , 2001, GECCO '09.

[9]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..