Cation-induced molecular motion of spring-like [2]catenanes

The syntheses and cation recognition studies of two novel heteroditopic [2]catenanes that are capable of reversible rotary motion are described. Prepared by chloride anion templation, both catenanes possess a calixdiquinone unit able to bind Na+, K+, NH4+ and Ba2+ cations. Following characterization of the chloride salts of both catenanes by NMR, mass spectrometry and crystal structure determination, hexafluorophosphate salts were investigated for their behaviour upon addition of cations. Ba2+ complexation caused a partial intra-ring rotation of the two macrocycles in both species, which was reversed upon addition of the sequestering SO42− anion.

[1]  P. Beer,et al.  Anion recognition and cation-induced molecular motion in a heteroditopic [2]rotaxane. , 2011, Chemistry.

[2]  S. J. Loeb,et al.  A [2]rotaxane flip switch driven by coordination geometry. , 2010, Angewandte Chemie.

[3]  Steven J. Langford,et al.  Advances Towards Synthetic Machines at the Molecular and Nanoscale Level , 2010, International journal of molecular sciences.

[4]  X. Wang,et al.  Synthesis and investigation of host-[2]rotaxanes that bind metal cations. , 2010, The Journal of organic chemistry.

[5]  J. Sauvage,et al.  From Chemical Topology to Molecular Machines (Nobel Lecture). , 2017, Angewandte Chemie.

[6]  Bradley D. Smith,et al.  Squaraine rotaxane as a reversible optical chloride sensor. , 2010, Chemistry.

[7]  Jason J. Davis,et al.  Mechanically interlocked and switchable molecules at surfaces. , 2010, Chemical communications.

[8]  J. F. Stoddart,et al.  Molecular, Supramolecular, and Macromolecular Motors and Artificial Muscles , 2009 .

[9]  David A Leigh,et al.  Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. , 2009, Chemical Society reviews.

[10]  A. Credi,et al.  Artificial molecular shuttles: from concepts to devices , 2009 .

[11]  Chien‐Chen Lai,et al.  A guanidinium ion-based anion- and solvent polarity-controllable molecular switch. , 2009, Organic letters.

[12]  Jason J. Davis,et al.  Interlocked host rotaxane and catenane structures for sensing charged guest species via optical and electrochemical methodologies. , 2009, Organic & biomolecular chemistry.

[13]  P. J. Lusby,et al.  An ion-pair template for rotaxane formation and its exploitation in an orthogonal interaction anion-switchable molecular shuttle. , 2008, Angewandte Chemie.

[14]  Sérgio M. Santos,et al.  Anion induced and inhibited circumrotation of a [2]catenane. , 2008, Chemical communications.

[15]  Sérgio M. Santos,et al.  Cooperative AND ion-pair recognition by heteroditopic calix[4]diquinone receptors. , 2008, Chemistry.

[16]  Yi‐Hung Liu,et al.  Using acetate anions to induce translational isomerization in a neutral urea-based molecular switch. , 2007, Angewandte Chemie.

[17]  Yi‐Hung Liu,et al.  Use of anions to allow translational isomerism of a [2]rotaxane. , 2007, Chemistry.

[18]  P. Beer,et al.  Tuning the strength and selectivity of ion-pair recognition using heteroditopic calix[4]arene-based receptors , 2007 .

[19]  J. O. Jeppesen,et al.  Using Molecular Force to Overcome Steric Barriers in a Springlike Molecular Ouroboros** , 2007 .

[20]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[21]  J. Crowley,et al.  Protonmotive force: development of electrostatic drivers for synthetic molecular motors. , 2006, Chemistry.

[22]  P. Beer,et al.  Cooperative AND receptor for ion-pairs. , 2006, Chemical communications.

[23]  David A Leigh,et al.  Half-rotation in a [2]catenane via interconvertible Pd(II) coordination modes. , 2005, Chemical communications.

[24]  Bing Dai,et al.  Intramolecular Rotation through Proton Transfer: [Fe(η5‐C5H4CO2−)2] versus [(η5‐C5H4CO2−)Fe(η5‐C5H4CO2H)] , 2005 .

[25]  David A Leigh,et al.  Selecting topology and connectivity through metal-directed macrocyclization reactions: a square planar palladium [2]catenate and two noninterlocked isomers. , 2005, Journal of the American Chemical Society.

[26]  David A Leigh,et al.  Complexation-induced translational isomerism: shuttling through stepwise competitive binding. , 2005, Angewandte Chemie.

[27]  J Fraser Stoddart,et al.  Counterion-induced translational isomerism in a bistable [2]rotaxane. , 2004, Organic letters.

[28]  Maxwell J. Gunter,et al.  Superstructured Porphyrins as Effectors in Dynamic Supramolecular Assemblies: Receptors, Rotaxanes and Catenanes , 2004 .

[29]  David A Leigh,et al.  Shuttling through anion recognition. , 2004, Angewandte Chemie.

[30]  Bradley D. Smith,et al.  Recognition-directed assembly of salt-binding [2]rotaxanes , 2002 .

[31]  Stoddart,et al.  Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs , 2000, The Journal of organic chemistry.

[32]  Bradley D. Smith,et al.  [2]Rotaxane with a cation-binding wheel , 2000 .

[33]  David J. Williams,et al.  Pseudorotaxanes and Catenanes Containing a Redox‐Active Unit Derived from Tetrathiafulvalene , 1999 .

[34]  David A. Leigh,et al.  Organic “Magic Rings”: The Hydrogen Bond-Directed Assembly of Catenanes under Thermodynamic Control , 1999 .

[35]  Vincenzo Balzani,et al.  A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit. , 1998, Angewandte Chemie.

[36]  Martin R. Johnston,et al.  Porphyrin [2]catenanes—dynamic control through protonation , 1994 .