Quantum Errors and Disturbances: Response to Busch, Lahti and Werner

Busch, Lahti and Werner (BLW) have recently criticized the operator approach to the description of quantum errors and disturbances. Their criticisms are justified to the extent that the physical meaning of the operator definitions has not hitherto been adequately explained. We rectify that omission. We then examine BLW’s criticisms in the light of our analysis. We argue that, although the BLW approach favour (based on the Wasserstein two-deviation) has its uses, there are important physical situations where an operator approach is preferable. We also discuss the reason why the error-disturbance relation is still giving rise to controversies almost a century after Heisenberg first stated his microscope argument. We argue that the source of the difficulties is the problem of interpretation, which is not so wholly disconnected from experimental practicalities as is sometimes supposed.

[1]  Masanao Ozawa,et al.  Quantum Limits of Measurements and Uncertainty Principle , 2015, 1505.05083.

[2]  P. Busch Quantum rms error and Heisenberg's error-disturbance relation , 2014 .

[3]  Masanao Ozawa,et al.  Error-disturbance relations in mixed states , 2014, 1404.3388.

[4]  R. Werner,et al.  Comment on "Experimental Test of Error-Disturbance Uncertainty Relations by Weak Measurement" , 2014, 1403.0367.

[5]  R. Werner,et al.  Comment on "Noise and Disturbance in Quantum Measurements: An Information-Theoretic Approach" , 2014, 1403.0368.

[6]  M. Ozawa Heisenberg's uncertainty relation: Violation and reformulation , 2014, 1402.5601.

[7]  R. Werner,et al.  Measurement Uncertainty: Reply to Critics , 2014, 1402.3102.

[8]  Paul Busch,et al.  Measurement uncertainty relations , 2013, 1312.4392.

[9]  R. Werner,et al.  Colloquium: Quantum root-mean-square error and measurement uncertainty relations , 2013, 1312.4393.

[10]  Cyril Branciard,et al.  Deriving tight error-trade-off relations for approximate joint measurements of incompatible quantum observables , 2013, 1312.1857.

[11]  T. Rudolph,et al.  Operational constraints on state-dependent formulations of quantum error-disturbance trade-off relations , 2013, 1311.5506.

[12]  M. Ozawa Disproving Heisenberg's error-disturbance relation , 2013, 1308.3540.

[13]  Aephraim M. Steinberg,et al.  A note on different definitions of momentum disturbance , 2013, 1307.3604.

[14]  R. Werner,et al.  Proof of Heisenberg's error-disturbance relation. , 2013, Physical review letters.

[15]  Geoff J Pryde,et al.  Experimental test of universal complementarity relations. , 2012, Physical review letters.

[16]  Arkady Plotnitsky,et al.  Niels Bohr and Complementarity: An Introduction , 2012 .

[17]  E. Çinlar Probability and Stochastics , 2011 .

[18]  Ruediger Schack,et al.  Quantum-Bayesian Coherence , 2009, 1301.3274.

[19]  Kristian Camilleri Heisenberg and the Interpretation of Quantum Mechanics , 2009 .

[20]  Don Howard,et al.  Who Invented the “Copenhagen Interpretation”? A Study in Mythology , 2004, Philosophy of Science.

[21]  R. Werner The uncertainty relation for joint measurement of position and momentum , 2004, Quantum Inf. Comput..

[22]  P. Busch,et al.  Noise and disturbance in quantum measurement , 2003, quant-ph/0312006.

[23]  M. Ozawa Uncertainty relations for joint measurements of noncommuting observables , 2003, quant-ph/0310070.

[24]  M. Ozawa UNCERTAINTY PRINCIPLE FOR QUANTUM INSTRUMENTS AND COMPUTING , 2003, quant-ph/0310071.

[25]  M. Hall,et al.  Prior information: How to circumvent the standard joint-measurement uncertainty relation , 2003, quant-ph/0309091.

[26]  David Marcus Appleby,et al.  The Bell–Kochen–Specker theorem , 2003, quant-ph/0308114.

[27]  M. Ozawa Uncertainty relations for noise and disturbance in generalized quantum measurements , 2003, quant-ph/0307057.

[28]  M. Ozawa Physical content of Heisenberg's uncertainty relation: limitation and reformulation , 2002, quant-ph/0210044.

[29]  M. Ozawa Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement , 2002, quant-ph/0207121.

[30]  M. Ozawa Position measuring interactions and the Heisenberg uncertainty principle , 2001, quant-ph/0107001.

[31]  E. Sudarshan,et al.  Heisenberg's Uncertainty Principle , 2000 .

[32]  David Marcus Appleby,et al.  Optimal Measurements of Spin Direction , 1999, quant-ph/9911021.

[33]  A. Kent,et al.  Simulating quantum mechanics by non-contextual hidden variables , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  David Marcus Appleby,et al.  Bohmian Trajectories Post-Decoherence , 1999, quant-ph/9908029.

[35]  David Marcus Appleby,et al.  Generic Bohmian Trajectories of an Isolated Particle , 1999, quant-ph/9905003.

[36]  David Marcus Appleby,et al.  Optimal Joint Measurements of Position and Momentum , 1998, quant-ph/9803053.

[37]  David Marcus Appleby,et al.  Error Principle , 1998, quant-ph/9803051.

[38]  David Marcus Appleby,et al.  Concept of Experimental Accuracy and Simultaneous Measurements of Position and Momentum , 1998, quant-ph/9803046.

[39]  David Marcus Appleby,et al.  Maximal Accuracy and Minimal Disturbance in the Arthurs-Kelly Simultaneous Measurement Process , 1998, quant-ph/9803047.

[40]  Henry P. Stapp,et al.  The Undivided Universe: An ontological interpretation of Quantum Theory , 1994 .

[41]  P. Holland The Quantum Theory of Motion , 1993 .

[42]  F. Khalili,et al.  Quantum Measurement , 1992 .

[43]  Shiro Ishikawa,et al.  Uncertainty relations in simultaneous measurements for arbitrary observables , 1991 .

[44]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[45]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[46]  Goodman,et al.  Quantum correlations: A generalized Heisenberg uncertainty relation. , 1988, Physical review letters.

[47]  J. Wheeler,et al.  Quantum theory and measurement , 1983 .

[48]  J. Bell On the impossible pilot wave , 1982 .

[49]  H. Yuen Generalized quantum measurements and approximate simultaneous measurements of noncommuting observables , 1982 .

[50]  Vladimir B. Braginsky,et al.  Quantum Nondemolition Measurements , 1980, Science.

[51]  Scott D. Thomson,et al.  An Introduction , 1977 .

[52]  V. Bargmann,et al.  On the Completeness of Coherent States , 1971 .

[53]  A. Perelomov On the completeness of a system of coherent states , 1971, math-ph/0210005.

[54]  F. Trèves Topological vector spaces, distributions and kernels , 1967 .

[55]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[56]  J. L. Kelly,et al.  B.S.T.J. briefs: On the simultaneous measurement of a pair of conjugate observables , 1965 .

[57]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[58]  Berger Gruppentheorie und Quantenmechanik , 1931 .

[59]  E. H. Kennard Zur Quantenmechanik einfacher Bewegungstypen , 1927 .

[60]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[61]  M. Born Zur Quantenmechanik der Stoßvorgänge , 1926 .

[62]  Manuel Gadella,et al.  Dirac Kets, Gamow Vectors and Gel'fand triplets : the rigged Hilbert space formulation of quantum mechanics : lectures in mathematical physics at the University of Texas at Austin , 1989 .

[63]  A. Bohm,et al.  The rigged Hilbert space and quantum mechanics , 1978 .

[64]  Rohit Singh,et al.  private communication , 1969 .

[65]  G A Koblov,et al.  [Reply to the critics]. , 1965, Arkhiv anatomii, gistologii i embriologii.

[66]  W. L. Cowley The Uncertainty Principle , 1949, Nature.

[67]  W. Heisenberg The Physical Principles of the Quantum Theory , 1930 .