Renewable energy storage via CO2 and H2 conversion to methane and methanol: Assessment for small scale applications

[1]  R. B. Anderson,et al.  Hydrogenation of carbon monoxide and carbon dioxide on supported ruthenium catalysts at moderate pressures. [Molecular weight of product decreases sharply with increasing H/CO ratio of feed gas] , 1965 .

[2]  D. Mears,et al.  Tests for Transport Limitations in Experimental Catalytic Reactors , 1971 .

[3]  P. J. Lunde,et al.  Modeling, Simulation, and Operation of a Sabatier Reactor , 1974 .

[4]  Gilbert F. Froment,et al.  A Steady-State Kinetic Model for Methanol Synthesis and the Water Gas Shift Reaction on a Commercial Cu/ZnO/Al2O3 Catalyst , 1996 .

[5]  Wei Wei,et al.  A short review of catalysis for CO2 conversion , 2009 .

[6]  Timothy J. Wallington,et al.  Octane Numbers of Ethanol− and Methanol−Gasoline Blends Estimated from Molar Concentrations , 2010 .

[7]  Dongke Zhang,et al.  Recent progress in alkaline water electrolysis for hydrogen production and applications , 2010 .

[8]  Ibram Ganesh,et al.  Conversion of Carbon Dioxide into Several Potential Chemical Commodities Following Different Pathways - A Review , 2013 .

[9]  Jyeshtharaj B. Joshi,et al.  Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies , 2014 .

[10]  Bruno G. Pollet,et al.  Metal hydride hydrogen compressors: A review , 2014 .

[11]  Mohammad Reza Rahimpour,et al.  Hydrogenation of CO2 to value-added products—A review and potential future developments , 2014 .

[12]  Teuku Meurah Indra Mahlia,et al.  A review of available methods and development on energy storage; technology update , 2014 .

[13]  Jihong Wang,et al.  Overview of current development in electrical energy storage technologies and the application potential in power system operation , 2015 .

[14]  D. Brilman,et al.  A novel condensation reactor for efficient CO2 to methanol conversion for storage of renewable electric energy , 2015 .

[15]  O. Araújo,et al.  Carbon dioxide management by chemical conversion to methanol: HYDROGENATION and BI-REFORMING , 2016 .

[16]  Song Wu,et al.  The Challenge of Energy Storage in Europe: Focus on Power to Fuel , 2016 .

[17]  L. Lietti,et al.  CO2 hydrogenation to hydrocarbons over Co and Fe-based Fischer-Tropsch catalysts , 2016 .

[18]  Torben R. Jensen,et al.  Complex and liquid hydrides for energy storage , 2016, Applied Physics A.

[19]  Giulia Bozzano,et al.  Efficient methanol synthesis: Perspectives, technologies and optimization strategies , 2016 .

[20]  Tao Zhang,et al.  Methanol synthesis from CO2 and H2 over Pd/ZnO/Al2O3: Catalyst structure dependence of methanol selectivity , 2016 .

[21]  M. Rahimpour,et al.  Development of an Efficient Methanol Production Process for Direct CO2 Hydrogenation over a Cu/ZnO/Al2O3 Catalyst , 2017 .

[22]  Mukrimin Sevket Guney,et al.  Classification and assessment of energy storage systems , 2017 .

[23]  M. K. Biddinika,et al.  Energy-saving combination of N2 production, NH3 synthesis, and power generation , 2017 .

[24]  Q. Ge,et al.  CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy , 2017 .

[25]  O. Y. Orhan,et al.  CO2 utilization: Developments in conversion processes , 2017 .

[26]  B. Shakouri,et al.  Sustainable development and ecological economics , 2017 .

[27]  S. Verhelst,et al.  The Chemical Route to a Carbon Dioxide Neutral World. , 2017, ChemSusChem.

[28]  A. Züttel,et al.  Small-scale demonstration of the conversion of renewable energy to synthetic hydrocarbons , 2017 .

[29]  Andrea Presciutti,et al.  Experimental Investigation on CO2 Methanation Process for Solar Energy Storage Compared to CO2-Based Methanol Synthesis , 2017 .

[30]  Johannes Kabisch,et al.  Fueling the future with biomass: Processes and pathways for a sustainable supply of hydrocarbon fuels and biogas , 2017, Engineering in life sciences.

[31]  Karim Ghaib,et al.  Power-to-Methane: A state-of-the-art review , 2018 .

[32]  L. Lietti,et al.  Kinetics of CO2 methanation on a Ru-based catalyst at process conditions relevant for Power-to-Gas applications , 2018, Applied Catalysis B: Environmental.

[33]  Robin Mutschler,et al.  Experimental performance investigation of a 2 kW methanation reactor , 2018 .

[34]  E. Kakaras,et al.  The CO2 economy: Review of CO2 capture and reuse technologies , 2018 .

[35]  E. Moioli,et al.  CO2 hydrogenation reaction over pristine Fe, Co, Ni, Cu and Al2O3 supported Ru: Comparison and determination of the activation energies , 2018, Journal of Catalysis.

[36]  E. Moioli,et al.  Parametric sensitivity in the Sabatier reaction over Ru/Al2O3 – theoretical determination of the minimal requirements for reactor activation , 2019, Reaction Chemistry & Engineering.