Quasi-Likelihood Estimation in Semiparametric Models

Abstract Suppose the expected value of a response variable Y may be written h(Xβ +γ(T)) where X and T are covariates, each of which may be vector-valued, β is an unknown parameter vector, γ is an unknown smooth function, and h is a known function. In this article, we outline a method for estimating the parameter β, γ of this type of semiparametric model using a quasi-likelihood function. Algorithms for computing the estimates are given and the asymptotic distribution theory for the estimators is developed. The generalization of this approach to the case in which Y is a multivariate response is also considered. The methodology is illustrated on two data sets and the results of a small Monte Carlo study are presented.

[1]  P. McCullagh Quasi-Likelihood Functions , 1983 .

[2]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[3]  R. John,et al.  Boundary modification for kernel regression , 1984 .

[4]  B. Yandell,et al.  Semi-Parametric Generalized Linear Models. , 1985 .

[5]  Dirk F. Moore,et al.  Asymptotic properties of moment estimators for overdispersed counts and proportions , 1986 .

[6]  R. Tibshirani,et al.  Generalized additive models for medical research , 1986, Statistical methods in medical research.

[7]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[8]  K Y Liang,et al.  Longitudinal data analysis for discrete and continuous outcomes. , 1986, Biometrics.

[9]  P. Green Penalized Likelihood for General Semi-Parametric Regression Models. , 1987 .

[10]  P. Robinson ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION , 1988 .

[11]  P. Speckman Kernel smoothing in partial linear models , 1988 .

[12]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[13]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[14]  J. Staniswalis The Kernel Estimate of a Regression Function in Likelihood-Based Models , 1989 .

[15]  James Stephen Marron,et al.  Choosing a Kernel Regression Estimator , 1991 .

[16]  W. Wong,et al.  Profile Likelihood and Conditionally Parametric Models , 1992 .

[17]  John A. Nelder,et al.  Generalized linear models. 2nd ed. , 1993 .

[18]  Jianqing Fan Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .

[19]  S. Hunsberger Semiparametric Regression in Likelihood-Based Models , 1994 .