Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole
暂无分享,去创建一个
L. Baiotti | I. Hawke | E. Seidel | J. Font | L. Baiotti | L. Rezzolla | N. Stergioulas | I. Hawke | L. Rezzolla | J. A. Font | E. Seidel | F. Loeffler | P. J. Montero | F. Loeffler | N. Stergioulas
[1] S. Shapiro,et al. Relativistic hydrodynamic evolutions with black hole excision , 2004, gr-qc/0401076.
[2] S. Shapiro,et al. Magnetic braking in differentially rotating, relativistic stars , 2003, astro-ph/0312038.
[3] Scott H. Hawley,et al. Evolutions in 3D numerical relativity using fixed mesh refinement , 2003, gr-qc/0310042.
[4] S. Bonazzola,et al. Constrained scheme for the Einstein equations based on the Dirac gauge and spherical coordinates , 2003, gr-qc/0307082.
[5] C. Palenzuela,et al. A Symmetry breaking mechanism for the Z4 general covariant evolution system , 2003, gr-qc/0307067.
[6] D. Shoemaker,et al. Impact of densitized lapse slicings on evolutions of a wobbling black hole , 2003, gr-qc/0307015.
[7] Jonathan Thornburg,et al. A Fast Apparent‐Horizon Finder for 3‐Dimensional Cartesian Grids in Numerical Relativity , 2003, gr-qc/0306056.
[8] B. Stephens,et al. Magnetic Braking and Viscous Damping of Differential Rotation in Cylindrical Stars , 2003, astro-ph/0310304.
[9] M. Shibata. Collapse of Rotating Supramassive Neutron Stars to Black Holes: Fully General Relativistic Simulations , 2003, astro-ph/0310020.
[10] B. Krishnan,et al. Dynamical Horizons and their Properties , 2003, gr-qc/0308033.
[11] A new general purpose event horizon finder for 3D numerical spacetimes , 2003, gr-qc/0305039.
[12] M. Choptuik,et al. Critical collapse of the massless scalar field in axisymmetry , 2003, gr-qc/0305003.
[13] M. Shibata. Axisymmetric general relativistic hydrodynamics: Long term evolution of neutron stars and stellar collapse to neutron stars and black holes , 2003, gr-qc/0301103.
[14] J. Font,et al. Quasi-periodic accretion and gravitational waves from oscillating 'toroidal neutron stars' around a Schwarzschild black hole , 2002, gr-qc/0210018.
[15] E. Seidel,et al. Gauge conditions for long-term numerical black hole evolutions without excision , 2002, gr-qc/0206072.
[16] B. Krishnan,et al. Introduction to isolated horizons in numerical relativity , 2002, gr-qc/0206008.
[17] L. Rezzolla,et al. An improved exact Riemann solver for multi-dimensional relativistic flows , 2002, Journal of Fluid Mechanics.
[18] J. Font. Numerical Hydrodynamics in General Relativity , 2000, Living reviews in relativity.
[19] N. Stergioulas. Rotating Stars in Relativity , 1998, Living reviews in relativity.
[20] Nikolaos Stergioulas,et al. Recent Developments in Gravity , 2003 .
[21] S. Shapiro,et al. Improved numerical stability of stationary black hole evolution calculations , 2002, gr-qc/0209066.
[22] O. Sarbach,et al. Hyperbolicity of the Baumgarte-Shapiro-Shibata-Nakamura system of Einstein evolution equations , 2002 .
[23] J. Frauendiener. Discretizations of axisymmetric systems , 2002, gr-qc/0207092.
[24] B. Krishnan,et al. Dynamical horizons: energy, angular momentum, fluxes, and balance laws. , 2002, Physical review letters.
[25] Z. Bern. Perturbative Quantum Gravity and its Relation to Gauge Theory , 2002, Living reviews in relativity.
[26] J. Font,et al. Relativistic simulations of rotational core collapse - II. Collapse dynamics and gravitational radiation , 2002, astro-ph/0204289.
[27] H. Shinkai,et al. Advantages of a modified ADM formulation: Constraint propagation analysis of the Baumgarte-Shapiro-Shibata-Nakamura system , 2002, gr-qc/0204002.
[28] D. Shoemaker,et al. Numerical stability of a new conformal-traceless 3 + 1 formulation of the einstein equation , 2002, gr-qc/0202105.
[29] Masaru Shibata,et al. MERGER OF BINARY NEUTRON STARS IN FULLY GENERAL RELATIVISTIC SIMULATION , 2002, gr-qc/0203037.
[30] E. Seidel,et al. Three-dimensional numerical general relativistic hydrodynamics. II. Long-term dynamics of single relativistic stars , 2001, gr-qc/0110047.
[31] D. Holz,et al. Hydrostatic Expansion and Spin Changes during Type I X-Ray Bursts , 2001, astro-ph/0108009.
[32] Lawrence E. Kidder,et al. Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations , 2001, gr-qc/0105031.
[33] E. Seidel,et al. Black Hole Excision for Dynamic Black Holes , 2001, gr-qc/0104020.
[34] A. Ashtekar,et al. Mechanics of rotating isolated horizons , 2001, gr-qc/0103026.
[35] L. Rezzolla,et al. An improved exact Riemann solver for relativistic hydrodynamics , 2001, Journal of Fluid Mechanics.
[36] E. Seidel,et al. 3D grazing collision of two black holes. , 2000, Physical review letters.
[37] M. Alcubierre,et al. Simple excision of a black hole in 3 + 1 numerical relativity , 2000, gr-qc/0008067.
[38] J. Font,et al. Nonlinear r-modes in rapidly rotating relativistic stars. , 2000, Physical review letters.
[39] S. Shapiro. Differential Rotation in Neutron Stars: Magnetic Braking and Viscous Damping , 2000, astro-ph/0010493.
[40] D. Shoemaker,et al. Grazing collisions of black holes via the excision of singularities. , 2000, Physical review letters.
[41] G. B. Cook. Initial Data for Numerical Relativity , 2000, Living reviews in relativity.
[42] M. Shibata. Axisymmetric Simulations of Rotating Stellar Collapse in Full General Relativity: Criteria for Prompt Collapse to Black Holes , 2000, gr-qc/0007049.
[43] Lewandowski,et al. Generic isolated horizons and their applications , 2000, Physical review letters.
[44] Lawrence E. Kidder,et al. Black hole evolution by spectral methods , 2000, gr-qc/0005056.
[45] E. Mueller,et al. The exact solution of the Riemann problem with non-zero tangential velocities in relativistic hydrodynamics , 2000, Journal of Fluid Mechanics.
[46] E. Seidel,et al. Towards a stable numerical evolution of strongly gravitating systems in general relativity: The conformal treatments , 2000, gr-qc/0003071.
[47] S. Shapiro,et al. Stability and collapse of rapidly rotating, supramassive neutron stars: 3D simulations in general relativity , 1999, astro-ph/9911308.
[48] E. Seidel,et al. Towards an understanding of the stability properties of the 3+1 evolution equations in general relativity. , 1999, gr-qc/9908079.
[49] J. Font,et al. Three-dimensional numerical general relativistic hydrodynamics. 1. Formulations, methods, and code tests , 1998, gr-qc/9811015.
[50] M. Shibata. Fully General Relativistic Simulation of Coalescing Binary Neutron Stars , 1999, gr-qc/9908027.
[51] J. Font,et al. Non-linear hydrodynamical evolution of rotating relativistic stars: numerical methods and code tests , 1999, gr-qc/9908010.
[52] S. Fairhurst,et al. Mechanics of isolated horizons , 1999, gr-qc/9907068.
[53] M. Aloy,et al. An efficient implementation of flux formulae in multidimensional relativistic hydrodynamical codes , 1999, astro-ph/9904195.
[54] E. Muller,et al. GENESIS: A High-Resolution Code for Three-dimensional Relativistic Hydrodynamics , 1999, astro-ph/9903352.
[55] Timothy J. Barth,et al. High-order methods for computational physics , 1999 .
[56] S. Shapiro,et al. Cauchy perturbative matching and outer boundary conditions: Computational studies , 1998, gr-qc/9807047.
[57] S. Shapiro,et al. On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.
[58] Rosa Donat,et al. A Flux-Split Algorithm applied to Relativistic Flows , 1998 .
[59] E. Seidel,et al. Numerical evolution of matter in dynamical axisymmetric black hole spacetimes: I. Methods and tests , 1998, gr-qc/9807017.
[60] L. Rezzolla,et al. Cauchy-perturbative matching and outer boundary conditions: Methods and tests , 1998, gr-qc/9802011.
[61] Lawrence E. Kidder,et al. STABLE CHARACTERISTIC EVOLUTION OF GENERIC THREE-DIMENSIONAL SINGLE-BLACK-HOLE SPACETIMES , 1998, gr-qc/9801069.
[62] M. Parashar,et al. Boosted Three-Dimensional Black-Hole Evolutions with Singularity Excision , 1997, gr-qc/9711078.
[63] M. Parashar,et al. GRAVITATIONAL WAVE EXTRACTION AND OUTER BOUNDARY CONDITIONS BY PERTURBATIVE MATCHING , 1997, gr-qc/9709082.
[64] M. Alcubierre,et al. Pathologies of hyperbolic gauges in general relativity and other field theories , 1997, gr-qc/9709024.
[65] Culbert B. Laney,et al. Computational Gasdynamics: Waves , 1998 .
[66] A. Gautschy,et al. Computational methods for astrophysical fluid flow , 1998 .
[67] Chi-Wang Shu,et al. Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..
[68] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[69] M. Alcubierre. Appearance of coordinate shocks in hyperbolic formalisms of general relativity , 1996, gr-qc/9609015.
[70] Antonio Marquina,et al. Capturing Shock Reflections , 1996 .
[71] R. T Jantzen,et al. Proceedings of the Seventh Marcel Grossmann Meeting on General Relativity , 1996 .
[72] E. Seidel,et al. Oscillating apparent horizons in numerically generated spacetimes , 1995 .
[73] Nakamura,et al. Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.
[74] Seidel,et al. New formalism for numerical relativity. , 1994, Physical review letters.
[75] Brandt,et al. Evolution of distorted rotating black holes. II. Dynamics and analysis. , 1994, Physical review. D, Particles and fields.
[76] Brandt,et al. Evolution of distorted rotating black holes. I. Methods and tests. , 1994, Physical review. D, Particles and fields.
[77] N. Stergioulas,et al. Comparing models of rapidly rotating relativistic stars constructed by two numerical methods , 1994, astro-ph/9411032.
[78] Brandt,et al. Dynamics of Apparent and Event Horizons. , 1994, Physical review letters.
[79] Brandt,et al. Dynamics of black hole apparent horizons. , 1994, Physical review. D, Particles and fields.
[80] T. Hou,et al. Why nonconservative schemes converge to wrong solutions: error analysis , 1994 .
[81] Seidel,et al. Towards a singularity-proof scheme in numerical relativity. , 1992, Physical review letters.
[82] J. Miralles,et al. Numerical relativistic hydrodynamics: Local characteristic approach. , 1991, Physical review. D, Particles and fields.
[83] R. Sorkin,et al. Turning-point method for axisymmetric stability of rotating relativistic stars , 1988 .
[84] Tsvi Piran,et al. A general relativistic code for rotating axisymmetric configurations and gravitational radiation: Numerical methods and tests , 1987 .
[85] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[86] Ken-ichi Oohara,et al. General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .
[87] T. Piran,et al. Gravitational-wave emission from rotating gravitational collapse. , 1985, Physical review letters.
[88] P. Woodward,et al. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .
[89] Takashi Nakamura. General Relativistic Collapse of Accreting Neutron Stars with Rotation , 1983 .
[90] Tsvi Piran,et al. General relativistic axisymmetric rotating systems: Coordinates and equations , 1983 .
[91] M. Sasaki,et al. Is collapse of a deformed star always effectual for gravitational radiation , 1981 .
[92] Larry Smarr,et al. Kinematical conditions in the construction of spacetime , 1978 .
[93] D. Christodoulou. Reversible and Irreversible Transformations in Black-Hole Physics , 1970 .
[94] J. Bardeen. A Variational Principle for Rotating Stars in General Relativity , 1970 .
[95] J. Gillis,et al. Methods in Computational Physics , 1964 .
[96] In Gravitation: an introduction to current research , 1962 .
[97] P. Lax,et al. Systems of conservation laws , 1960 .
[98] R. D. Richtmyer,et al. Difference methods for initial-value problems , 1959 .