Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole

We present a new three-dimensional fully general-relativistic hydrodynamics code using high-resolution shock-capturing techniques and a conformal traceless formulation of the Einstein equations. Besides presenting a thorough set of tests which the code passes with very high accuracy, we discuss its application to the study of the gravitational collapse of uniformly rotating neutron stars to Kerr black holes. The initial stellar models are modeled as relativistic polytropes which are either secularly or dynamically unstable and with angular velocities which range from slow rotation to the mass-shedding limit. We investigate the gravitational collapse by carefully studying not only the dynamics of the matter, but also that of the trapped surfaces, i.e., of both the apparent and event horizons formed during the collapse. The use of these surfaces, together with the dynamical horizon framework, allows for a precise measurement of the black-hole mass and spin. The ability to successfully perform these simulations for sufficiently long times relies on excising a region of the computational domain which includes the singularity and is within the apparent horizon. The dynamics of the collapsing matter is strongly influenced by the initial amount of angular momentum in the progenitor star and, for initial models with sufficiently high angular velocities, the collapse can lead to the formation of an unstable disc in differential rotation. All of the simulations performed with uniformly rotating initial data and a polytropic or ideal-fluid equation of state show no evidence of shocks or of the presence of matter on stable orbits outside the black hole.

[1]  S. Shapiro,et al.  Relativistic hydrodynamic evolutions with black hole excision , 2004, gr-qc/0401076.

[2]  S. Shapiro,et al.  Magnetic braking in differentially rotating, relativistic stars , 2003, astro-ph/0312038.

[3]  Scott H. Hawley,et al.  Evolutions in 3D numerical relativity using fixed mesh refinement , 2003, gr-qc/0310042.

[4]  S. Bonazzola,et al.  Constrained scheme for the Einstein equations based on the Dirac gauge and spherical coordinates , 2003, gr-qc/0307082.

[5]  C. Palenzuela,et al.  A Symmetry breaking mechanism for the Z4 general covariant evolution system , 2003, gr-qc/0307067.

[6]  D. Shoemaker,et al.  Impact of densitized lapse slicings on evolutions of a wobbling black hole , 2003, gr-qc/0307015.

[7]  Jonathan Thornburg,et al.  A Fast Apparent‐Horizon Finder for 3‐Dimensional Cartesian Grids in Numerical Relativity , 2003, gr-qc/0306056.

[8]  B. Stephens,et al.  Magnetic Braking and Viscous Damping of Differential Rotation in Cylindrical Stars , 2003, astro-ph/0310304.

[9]  M. Shibata Collapse of Rotating Supramassive Neutron Stars to Black Holes: Fully General Relativistic Simulations , 2003, astro-ph/0310020.

[10]  B. Krishnan,et al.  Dynamical Horizons and their Properties , 2003, gr-qc/0308033.

[11]  A new general purpose event horizon finder for 3D numerical spacetimes , 2003, gr-qc/0305039.

[12]  M. Choptuik,et al.  Critical collapse of the massless scalar field in axisymmetry , 2003, gr-qc/0305003.

[13]  M. Shibata Axisymmetric general relativistic hydrodynamics: Long term evolution of neutron stars and stellar collapse to neutron stars and black holes , 2003, gr-qc/0301103.

[14]  J. Font,et al.  Quasi-periodic accretion and gravitational waves from oscillating 'toroidal neutron stars' around a Schwarzschild black hole , 2002, gr-qc/0210018.

[15]  E. Seidel,et al.  Gauge conditions for long-term numerical black hole evolutions without excision , 2002, gr-qc/0206072.

[16]  B. Krishnan,et al.  Introduction to isolated horizons in numerical relativity , 2002, gr-qc/0206008.

[17]  L. Rezzolla,et al.  An improved exact Riemann solver for multi-dimensional relativistic flows , 2002, Journal of Fluid Mechanics.

[18]  J. Font Numerical Hydrodynamics in General Relativity , 2000, Living reviews in relativity.

[19]  N. Stergioulas Rotating Stars in Relativity , 1998, Living reviews in relativity.

[20]  Nikolaos Stergioulas,et al.  Recent Developments in Gravity , 2003 .

[21]  S. Shapiro,et al.  Improved numerical stability of stationary black hole evolution calculations , 2002, gr-qc/0209066.

[22]  O. Sarbach,et al.  Hyperbolicity of the Baumgarte-Shapiro-Shibata-Nakamura system of Einstein evolution equations , 2002 .

[23]  J. Frauendiener Discretizations of axisymmetric systems , 2002, gr-qc/0207092.

[24]  B. Krishnan,et al.  Dynamical horizons: energy, angular momentum, fluxes, and balance laws. , 2002, Physical review letters.

[25]  Z. Bern Perturbative Quantum Gravity and its Relation to Gauge Theory , 2002, Living reviews in relativity.

[26]  J. Font,et al.  Relativistic simulations of rotational core collapse - II. Collapse dynamics and gravitational radiation , 2002, astro-ph/0204289.

[27]  H. Shinkai,et al.  Advantages of a modified ADM formulation: Constraint propagation analysis of the Baumgarte-Shapiro-Shibata-Nakamura system , 2002, gr-qc/0204002.

[28]  D. Shoemaker,et al.  Numerical stability of a new conformal-traceless 3 + 1 formulation of the einstein equation , 2002, gr-qc/0202105.

[29]  Masaru Shibata,et al.  MERGER OF BINARY NEUTRON STARS IN FULLY GENERAL RELATIVISTIC SIMULATION , 2002, gr-qc/0203037.

[30]  E. Seidel,et al.  Three-dimensional numerical general relativistic hydrodynamics. II. Long-term dynamics of single relativistic stars , 2001, gr-qc/0110047.

[31]  D. Holz,et al.  Hydrostatic Expansion and Spin Changes during Type I X-Ray Bursts , 2001, astro-ph/0108009.

[32]  Lawrence E. Kidder,et al.  Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations , 2001, gr-qc/0105031.

[33]  E. Seidel,et al.  Black Hole Excision for Dynamic Black Holes , 2001, gr-qc/0104020.

[34]  A. Ashtekar,et al.  Mechanics of rotating isolated horizons , 2001, gr-qc/0103026.

[35]  L. Rezzolla,et al.  An improved exact Riemann solver for relativistic hydrodynamics , 2001, Journal of Fluid Mechanics.

[36]  E. Seidel,et al.  3D grazing collision of two black holes. , 2000, Physical review letters.

[37]  M. Alcubierre,et al.  Simple excision of a black hole in 3 + 1 numerical relativity , 2000, gr-qc/0008067.

[38]  J. Font,et al.  Nonlinear r-modes in rapidly rotating relativistic stars. , 2000, Physical review letters.

[39]  S. Shapiro Differential Rotation in Neutron Stars: Magnetic Braking and Viscous Damping , 2000, astro-ph/0010493.

[40]  D. Shoemaker,et al.  Grazing collisions of black holes via the excision of singularities. , 2000, Physical review letters.

[41]  G. B. Cook Initial Data for Numerical Relativity , 2000, Living reviews in relativity.

[42]  M. Shibata Axisymmetric Simulations of Rotating Stellar Collapse in Full General Relativity: Criteria for Prompt Collapse to Black Holes , 2000, gr-qc/0007049.

[43]  Lewandowski,et al.  Generic isolated horizons and their applications , 2000, Physical review letters.

[44]  Lawrence E. Kidder,et al.  Black hole evolution by spectral methods , 2000, gr-qc/0005056.

[45]  E. Mueller,et al.  The exact solution of the Riemann problem with non-zero tangential velocities in relativistic hydrodynamics , 2000, Journal of Fluid Mechanics.

[46]  E. Seidel,et al.  Towards a stable numerical evolution of strongly gravitating systems in general relativity: The conformal treatments , 2000, gr-qc/0003071.

[47]  S. Shapiro,et al.  Stability and collapse of rapidly rotating, supramassive neutron stars: 3D simulations in general relativity , 1999, astro-ph/9911308.

[48]  E. Seidel,et al.  Towards an understanding of the stability properties of the 3+1 evolution equations in general relativity. , 1999, gr-qc/9908079.

[49]  J. Font,et al.  Three-dimensional numerical general relativistic hydrodynamics. 1. Formulations, methods, and code tests , 1998, gr-qc/9811015.

[50]  M. Shibata Fully General Relativistic Simulation of Coalescing Binary Neutron Stars , 1999, gr-qc/9908027.

[51]  J. Font,et al.  Non-linear hydrodynamical evolution of rotating relativistic stars: numerical methods and code tests , 1999, gr-qc/9908010.

[52]  S. Fairhurst,et al.  Mechanics of isolated horizons , 1999, gr-qc/9907068.

[53]  M. Aloy,et al.  An efficient implementation of flux formulae in multidimensional relativistic hydrodynamical codes , 1999, astro-ph/9904195.

[54]  E. Muller,et al.  GENESIS: A High-Resolution Code for Three-dimensional Relativistic Hydrodynamics , 1999, astro-ph/9903352.

[55]  Timothy J. Barth,et al.  High-order methods for computational physics , 1999 .

[56]  S. Shapiro,et al.  Cauchy perturbative matching and outer boundary conditions: Computational studies , 1998, gr-qc/9807047.

[57]  S. Shapiro,et al.  On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.

[58]  Rosa Donat,et al.  A Flux-Split Algorithm applied to Relativistic Flows , 1998 .

[59]  E. Seidel,et al.  Numerical evolution of matter in dynamical axisymmetric black hole spacetimes: I. Methods and tests , 1998, gr-qc/9807017.

[60]  L. Rezzolla,et al.  Cauchy-perturbative matching and outer boundary conditions: Methods and tests , 1998, gr-qc/9802011.

[61]  Lawrence E. Kidder,et al.  STABLE CHARACTERISTIC EVOLUTION OF GENERIC THREE-DIMENSIONAL SINGLE-BLACK-HOLE SPACETIMES , 1998, gr-qc/9801069.

[62]  M. Parashar,et al.  Boosted Three-Dimensional Black-Hole Evolutions with Singularity Excision , 1997, gr-qc/9711078.

[63]  M. Parashar,et al.  GRAVITATIONAL WAVE EXTRACTION AND OUTER BOUNDARY CONDITIONS BY PERTURBATIVE MATCHING , 1997, gr-qc/9709082.

[64]  M. Alcubierre,et al.  Pathologies of hyperbolic gauges in general relativity and other field theories , 1997, gr-qc/9709024.

[65]  Culbert B. Laney,et al.  Computational Gasdynamics: Waves , 1998 .

[66]  A. Gautschy,et al.  Computational methods for astrophysical fluid flow , 1998 .

[67]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[68]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[69]  M. Alcubierre Appearance of coordinate shocks in hyperbolic formalisms of general relativity , 1996, gr-qc/9609015.

[70]  Antonio Marquina,et al.  Capturing Shock Reflections , 1996 .

[71]  R. T Jantzen,et al.  Proceedings of the Seventh Marcel Grossmann Meeting on General Relativity , 1996 .

[72]  E. Seidel,et al.  Oscillating apparent horizons in numerically generated spacetimes , 1995 .

[73]  Nakamura,et al.  Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.

[74]  Seidel,et al.  New formalism for numerical relativity. , 1994, Physical review letters.

[75]  Brandt,et al.  Evolution of distorted rotating black holes. II. Dynamics and analysis. , 1994, Physical review. D, Particles and fields.

[76]  Brandt,et al.  Evolution of distorted rotating black holes. I. Methods and tests. , 1994, Physical review. D, Particles and fields.

[77]  N. Stergioulas,et al.  Comparing models of rapidly rotating relativistic stars constructed by two numerical methods , 1994, astro-ph/9411032.

[78]  Brandt,et al.  Dynamics of Apparent and Event Horizons. , 1994, Physical review letters.

[79]  Brandt,et al.  Dynamics of black hole apparent horizons. , 1994, Physical review. D, Particles and fields.

[80]  T. Hou,et al.  Why nonconservative schemes converge to wrong solutions: error analysis , 1994 .

[81]  Seidel,et al.  Towards a singularity-proof scheme in numerical relativity. , 1992, Physical review letters.

[82]  J. Miralles,et al.  Numerical relativistic hydrodynamics: Local characteristic approach. , 1991, Physical review. D, Particles and fields.

[83]  R. Sorkin,et al.  Turning-point method for axisymmetric stability of rotating relativistic stars , 1988 .

[84]  Tsvi Piran,et al.  A general relativistic code for rotating axisymmetric configurations and gravitational radiation: Numerical methods and tests , 1987 .

[85]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[86]  Ken-ichi Oohara,et al.  General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .

[87]  T. Piran,et al.  Gravitational-wave emission from rotating gravitational collapse. , 1985, Physical review letters.

[88]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[89]  Takashi Nakamura General Relativistic Collapse of Accreting Neutron Stars with Rotation , 1983 .

[90]  Tsvi Piran,et al.  General relativistic axisymmetric rotating systems: Coordinates and equations , 1983 .

[91]  M. Sasaki,et al.  Is collapse of a deformed star always effectual for gravitational radiation , 1981 .

[92]  Larry Smarr,et al.  Kinematical conditions in the construction of spacetime , 1978 .

[93]  D. Christodoulou Reversible and Irreversible Transformations in Black-Hole Physics , 1970 .

[94]  J. Bardeen A Variational Principle for Rotating Stars in General Relativity , 1970 .

[95]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[96]  In Gravitation: an introduction to current research , 1962 .

[97]  P. Lax,et al.  Systems of conservation laws , 1960 .

[98]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .