On guided electromagnetic waves in photonic crystal waveguides

The paper addresses the issue of existence and confinement of electromagnetic modes guided by linear defects in photonic crystals. Sufficient condition are provided for existence of such waves near a given spectral location. Confinement to the guide is achieved due to a photonic band gap in the bulk dielectric medium.

[1]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[2]  Maksim Skorobogatiy,et al.  Fundamentals of Photonic Crystal Guiding , 2008 .

[3]  Habib Ammari,et al.  Guided Waves in a Photonic Bandgap Structure with a Line Defect , 2004, SIAM J. Appl. Math..

[4]  A. Figotin,et al.  Localized classical waves created by defects , 1997 .

[5]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[6]  A. Sobolev,et al.  Absolute Continuity in Periodic Waveguides , 2002 .

[7]  Alexander Figotin,et al.  Localization of Classical Waves II: Electromagnetic Waves , 1997 .

[8]  Steven G. Johnson,et al.  Photonic Crystals: The Road from Theory to Practice , 2001 .

[9]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[10]  Kazuaki Sakoda,et al.  Optical Properties of Photonic Crystals , 2001 .

[11]  On the scattering theory of the Laplacian with a periodic boundary condition. I. Existence of wave operators , 2003 .

[12]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[13]  Peter Kuchment,et al.  On guided waves in photonic crystal waveguides , 2004 .

[14]  V. I. Derguzov Discreteness of the spectrum of a periodic boundary-value problem related to the radiation of periodic waveguides , 1980 .

[15]  M. Birman,et al.  Periodic Magnetic Hamiltonian with a Variable Metric. The Problem of Absolute Continuity , 1999 .

[16]  溝畑 茂,et al.  The theory of partial differential equations , 1973 .

[17]  M. Seifert,et al.  Generalized Eigenfunctions for Waves in Inhomogeneous Media , 2002 .

[18]  P. Kuchment Floquet Theory for Partial Differential Equations , 1993 .

[19]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[20]  Alexander Figotin,et al.  Localization of classical waves I: Acoustic waves , 1996 .

[21]  R. Shterenberg,et al.  On the scattering theory of the Laplacian with a periodic boundary condition. II. Additional channels of scattering , 2004, Documenta Mathematica.

[22]  S. Guenneau,et al.  Foundations of Photonic Crystal Fibres , 2005 .

[23]  R. Bolstein,et al.  Expansions in eigenfunctions of selfadjoint operators , 1968 .

[24]  L. Friedlander,et al.  Institute for Mathematical Physics on the Spectrum of a Class of Second Order Periodic Elliptic Differential Operators on the Spectrum of a Class of Second Order Periodic Elliptic Differential Operators , 2022 .

[25]  J. Combes,et al.  Localization Near Band Edges For Random Schr Odinger Operators , 1997 .

[26]  M. Shubin,et al.  The Schrödinger Equation , 1991 .

[27]  Timothy A. Birks,et al.  Properties of photonic crystal fiber and the effective index model , 1998 .

[28]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[29]  Absolute continuity of the spectrum of a Schrodinger operator with a potential which is periodic in some directions and decays in others , 2004, math-ph/0402013.

[30]  The Schrödinger operator in a periodic waveguide on a plane and quasiconformal mappings , 2005 .

[31]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .