Weak Eigenfunctions for the Linearization of Extremal Elliptic Problems

Abstract We consider the semilinear elliptic problem[formula]where λ is a nonnegative parameter and g is a positive, nondecreasing, convex nonlinearity. There exists a value λ * of the parameter which is extremal in terms of existence of solution. We study the linearization of the semilinear problem at the extremal weak solution corresponding to the parameter λ = λ *. In some cases, this linearized problem has discrete and positive H 1 0 -spectrum. However, we prove that there always exists a positive weak eigenfunction in L 1 ( Ω ) with eigenvalue zero for this linearized problem. The zero L 1 -eigenvalue is coherent with the nonexistence of solutions of the semilinear problem for λ > λ *. Finally, we find all weak eigenfunctions and eigenvalues for the linearization of the extremal problem when Ω is the unit ball and g ( u )= e u or g ( u )=(1+ u ) p .

[1]  Jerrold Bebernes,et al.  Mathematical Problems from Combustion Theory , 1989 .

[2]  G. Watson Bessel Functions. (Scientific Books: A Treatise on the Theory of Bessel Functions) , 1923 .

[3]  D. Joseph,et al.  Quasilinear Dirichlet problems driven by positive sources , 1973 .

[4]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[5]  Michael G. Crandall,et al.  Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems , 1975 .

[6]  Jerome A. Goldstein,et al.  THE HEAT EQUATION WITH A SINGULAR POTENTIAL , 1984 .

[7]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[8]  Haim Brezis,et al.  Blow-up solutions of some nonlinear elliptic problems , 1997 .

[9]  I. M. Gel'fand,et al.  Some problems in the theory of quasilinear equations , 1987 .

[10]  H. Brezis,et al.  Some simple nonlinear PDE's without solutions , 1998 .

[11]  Haim Brezis,et al.  Blow up for $u_t-\Delta u=g(u)$ revisited , 1996, Advances in Differential Equations.

[12]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[13]  P Baras,et al.  Complete blow-up after Tmax for the solution of a semilinear heat equation , 1987 .

[14]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[15]  J. Vázquez,et al.  On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term , 1995 .