Solvent Effects on Electronic Spectra Studied by Multiconfigurational Perturbation Theory

The complete active space CAS self-consistent field SCF method . combined with multiconfigurational second-order perturbation theory CASPT2 and a . self-consistent reaction field SCRF model is used to study the effect of solvation on excited states of different molecules such as acetone, pyrimidine, some aminobenzene derivatives, indole, and imidazole. The present SCRF model, in which the solute molecule is placed into a spherical cavity surrounded by a dielectric continuum, also includes a repulsive potential representing the solute)solvent exchange repulsion and considers the time dependence of the absorption process. In general, we find that our calculations do reproduce the trends observed in experiment but underestimate the solvatochromic shifts. Q 1997 John Wiley & Sons, Inc. Int J Quant Chem 65: 167)181, 1997

[1]  P. Ilich,et al.  Electronic transitions in hydrated indole: A MD INDO/S study , 1989 .

[2]  P. Malmqvist,et al.  An ab initio study of aqueous Fe2+–Fe3+ electron transfer , 1992 .

[3]  I. C. Walker,et al.  The electronic states of the azines. II. Pyridine, studied by VUV absorption, near-threshold electron energy loss spectroscopy and ab initio multi-reference configuration interaction calculations , 1990 .

[4]  M. Fülscher,et al.  Excited states in polyene radical cations. An ab initio theoretical study , 1995 .

[5]  T. Fox,et al.  The calculation of solvatochromic shifts: the n-π* transition of acetone , 1992 .

[6]  D. R. Garmer,et al.  Reaction field calculation of the spectral shifts of indole , 1993 .

[7]  W. Moomaw,et al.  Electronic states of azabenzenes and azanaphthalenes: A revised and extended critical review , 1988 .

[8]  B. Roos,et al.  Theoretical Studies of the Electronic Spectra of Organic Molecules , 1995 .

[9]  R. Nelson,et al.  Microwave spectrum, structure, and barrier to internal rotation of acetone ☆ , 1965 .

[10]  Trygve Helgaker,et al.  A multiconfigurational self‐consistent reaction‐field method , 1988 .

[11]  J. Kirkwood,et al.  Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions , 1934 .

[12]  L. Goodman,et al.  Solvent Effects on the Fluorescence Spectra of Diazines. Dipole Moments in the (n,π*) Excited States1 , 1966 .

[13]  L. Serrano-Andrés,et al.  THEORETICAL STUDY OF THE INTERNAL CHARGE TRANSFER IN AMINOBENZONITRILES , 1995 .

[14]  E. Pantos,et al.  Absolute vacuum ultraviolet absorption spectra of some gaseous azabenzenes , 1984 .

[15]  Per-Olof Widmark,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1990 .

[16]  B. Roos,et al.  An ab initio quantum chemical study of vertically excited singlet states of pyrimidine , 1992 .

[17]  G. Karlstroem A new approach to the modeling of dielectric media effects in ab initio quantum chemical calculations , 1988 .

[18]  Aron Kuppermann,et al.  Electron-impact spectroscopy of acetaldehyde , 1987 .

[19]  Orlando Tapia,et al.  Self-consistent reaction field theory of solvent effects , 1975 .

[20]  Andreas Klamt,et al.  Calculation of UV/Vis Spectra in Solution , 1996 .

[21]  P. Suppan Invited review solvatochromic shifts: The influence of the medium on the energy of electronic states , 1990 .

[22]  L. Onsager Electric Moments of Molecules in Liquids , 1936 .

[23]  P. Callis,et al.  Hybrid simulations of solvation effects on electronic spectra: Indoles in water , 1994 .

[24]  B. Roos,et al.  The excited states of pyrazine: A basis set study , 1994 .

[25]  Mati Karelson,et al.  Theoretical treatment of solvent effects on electronic spectroscopy , 1992 .

[26]  Aleksandr Petrovich Demchenko,et al.  Ultraviolet Spectroscopy of Proteins , 1986, 1987.

[27]  B. Roos,et al.  Theoretical Study of the Electronic Spectrum of Imidazole , 1996 .

[28]  Jacopo Tomasi,et al.  Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent , 1994 .

[29]  E. Mcrae,et al.  Solvent Effects in Organic Spectra: Dipole Forces and the Franck–Condon Principle , 1954 .

[30]  K. Andersson,et al.  Towards an accurate molecular orbital theory for excited states: The azabenzenes , 1992 .

[31]  J. Kirkwood,et al.  The Electrostatic Influence of Substituents on the Dissociation Constants of Organic Acids. II , 1938 .

[32]  M. Eftink Fluorescence techniques for studying protein structure. , 2006, Methods of biochemical analysis.

[33]  James T. Hynes,et al.  Equilibrium and nonequilibrium solvation and solute electronic structure. III. Quantum theory , 1992 .

[34]  B. Roos,et al.  A combined theoretical and experimental determination of the electronic spectrum of acetone , 1996 .

[35]  H. Lami On the possible role of a mixed valence–Rydberg state in the fluorescence of indoles , 1977 .

[36]  Björn O. Roos,et al.  Multiconfigurational perturbation theory with level shift — the Cr2 potential revisited , 1995 .

[37]  T. von der Haar,et al.  Intramolecular charge transfer in aminobenzonitriles: Requirements for dual fluorescence , 1993 .

[38]  Z. Grabowski,et al.  Theoretical model for the double fluorescence of p-cyano-N,N-dimethylaniline in polar solvents , 1980 .

[39]  Fumio Hirata,et al.  A hybrid approach for the solvent effect on the electronic structure of a solute based on the RISM and Hartree-Fock equations , 1993 .

[40]  M. Robb,et al.  Calculation of solvatochromic shifts using MC-SCF theory. The n—π* transition of acetone , 1993 .

[41]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[42]  Jacopo Tomasi,et al.  Nonequilibrium solvation: An ab initio quantum‐mechanical method in the continuum cavity model approximation , 1993 .

[43]  Roland Lindh,et al.  Towards an accurate molecular orbital theory for excited states: Ethene, butadiene, and hexatriene , 1993 .

[44]  J. Hollas Vapour-phase ultra-violet absorption spectra of indene, indole, coumarone and thionaphthene , 1963 .

[45]  B. Roos,et al.  Lecture notes in quantum chemistry , 1992 .

[46]  G. G. Hall,et al.  The development of quantum mechanical solvent effect models. Macroscopic electrostatic contributions , 1976 .

[47]  J. Horwitz,et al.  Near-ultraviolet absorption bands of tryptophan. Studies using indole and 3-methylindole as models. , 1970, Biochemistry.

[48]  H. Ågren,et al.  Solvatochromatic shifts studied by multi-configuration self-consistent reaction field theory. Application to azabenzenes , 1992 .

[49]  James E. Brady,et al.  An analysis of dielectric models of solvatochromism , 1985 .

[50]  Rudolph A. Marcus,et al.  Electrostatic Free Energy and Other Properties of States Having Nonequilibrium Polarization. I , 1956 .

[51]  C. Cramer,et al.  General parameterized SCF model for free energies of solvation in aqueous solution , 1991 .

[52]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[53]  Per-Olof Widmark,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1995 .

[54]  H. -. Kim,et al.  Equilibrium and nonequilibrium solvation and solute electronic structure. I. Formulation , 1990 .

[55]  M. Fülscher,et al.  Theoretical study of the electronic spectra of cyclopentadiene, pyrrole, and furan , 1993 .

[56]  Roland Lindh,et al.  Direct self-consistent reaction field with Pauli repulsion: solvation effects on methylene peroxide , 1996 .

[57]  W. S. Benedict,et al.  Rotation‐Vibration Spectra of Deuterated Water Vapor , 1956 .

[58]  Björn O. Roos,et al.  The CASSCF state interaction method , 1989 .

[59]  E. G. McRae Theory of Solvent Effects on Molecular Electronic Spectra. Frequency Shifts , 1957 .

[60]  G. Karlstroem Electronic structure of hydrofluoride(1-) and hydrochloride(1-) in condensed phases studied by a CASSCF dielectric cavity model , 1989 .

[61]  P. Prasad,et al.  Nonlinear optical properties of p‐nitroaniline: An ab initio time‐dependent coupled perturbed Hartree–Fock study , 1991 .

[62]  G. Karlstroem,et al.  Proton transport in water modeled by a quantum chemical dielectric cavity model , 1988 .

[63]  M. F. Guest,et al.  The eletronic states of the azines. III, Pyrimidine, studied by VUV absorption, near-threshold electron energy-loss spectroscopy and ab initio multi-reference configuration calculations , 1990 .

[64]  Luis Serrano-Andrés,et al.  Theoretical Study of the Absorption and Emission Spectra of Indole in the Gas Phase and in a Solvent , 1996 .

[65]  M. Zerner,et al.  Calculations of the absorption and emission spectra of p-N,N-dimethylaminobenzonitrile and analogues in solution , 1995 .

[66]  Stephen R. Langhoff,et al.  Quantum mechanical electronic structure calculations with chemical accuracy , 1995 .