Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires.

We probe and control the optical properties of emission centers forming in radial heterostructure GaAs-Al0.3Ga0.7As nanowires and show that these emitters, located in Al0.3Ga0.7As layers, can exhibit quantum-dot like characteristics. We employ a radio frequency surface acoustic wave to dynamically control their emission energy, and occupancy state on a nanosecond time scale. In the spectral oscillations, we identify unambiguous signatures arising from both the mechanical and electrical component of the surface acoustic wave. In addition, different emission lines of a single emission center exhibit pronounced anticorrelated intensity oscillations during the acoustic cycle. These arise from a dynamically triggered carrier extraction out of the emission center to a continuum in the radial heterostructure. Using finite element modeling and Wentzel-Kramers-Brillouin theory we identify quantum tunneling as the underlying mechanism. These simulation results quantitatively reproduce the observed switching and show that in our systems these emission centers are spatially separated from the continuum by >10.5 nm.

[1]  G. Abstreiter,et al.  Electrical control of interdot electron tunneling in a double InGaAs quantum-dot nanostructure. , 2011, Physical review letters.

[2]  P. Petroff,et al.  A semiconductor exciton memory cell based on a single quantum nanostructure. , 2008, Nano letters.

[3]  G. Abstreiter,et al.  Crystal structure transfer in core/shell nanowires. , 2011, Nano letters.

[4]  Y. Ota,et al.  Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system , 2009, 0905.3063.

[5]  A. Wixforth,et al.  Acoustically Driven Storage of Light in a Quantum Well , 1997 .

[6]  F. Capasso Band-Gap Engineering: From Physics and Materials to New Semiconductor Devices , 1987, Science.

[7]  Achim Wixforth,et al.  Charge Conveyance and Nonlinear Acoustoelectric Phenomena for Intense Surface Acoustic Waves on a Semiconductor Quantum Well , 1999 .

[8]  C. Hu,et al.  Hole injection oxide breakdown model for very low voltage lifetime extrapolation , 1993, 31st Annual Proceedings Reliability Physics 1993.

[9]  E C Clark,et al.  Direct observation of controlled coupling in an individual quantum dot molecule. , 2005, Physical review letters.

[10]  Lucas Schweickert,et al.  Spontaneous alloy composition ordering in GaAs-AlGaAs core-shell nanowires. , 2013, Nano letters.

[11]  M. Kaniber,et al.  Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures , 2009 .

[12]  P. D. Dapkus,et al.  Room‐temperature laser operation of quantum‐well Ga(1−x)AlxAs‐GaAs laser diodes grown by metalorganic chemical vapor deposition , 1978 .

[13]  Achim Wixforth,et al.  Surface acoustic wave mediated carrier injection into individual quantum post nano emitters , 2012, Nanotechnology.

[14]  Dan Dalacu,et al.  Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires. , 2012, Nano letters.

[15]  V. Zwiller,et al.  Bright single-photon sources in bottom-up tailored nanowires , 2012, Nature Communications.

[16]  P. Santos,et al.  Band mixing and ambipolar transport by surface acoustic waves in GaAs quantum wells , 2004 .

[17]  Dirk Reuter,et al.  Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves. , 2010, Nano letters.

[18]  A. Wixforth,et al.  Photon trains and lasing: The periodically pumped quantum dot , 1998 .

[19]  Tu,et al.  Lifetime enhancement of two-dimensional excitons by the quantum-confined Stark effect. , 1985, Physical review letters.

[20]  C. H. W. Barnes,et al.  On-demand single-electron transfer between distant quantum dots , 2011, Nature.

[21]  Luke R. Wilson,et al.  Electric-field-dependent carrier capture and escape in self-assembled InAs/GaAs quantum dots , 2000 .

[22]  G. Abstreiter,et al.  Direct observation of a noncatalytic growth regime for GaAs nanowires. , 2011, Nano letters.

[23]  Piezo-photoreflectance of the direct gaps of GaAs and Ga0.78Al0.22As , 1990 .

[24]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[25]  Florian Siegert,et al.  Epitaxial core – shell and core – multishell nanowire heterostructures , 2002 .

[26]  Elisabeth Müller,et al.  Optically bright quantum dots in single Nanowires. , 2005, Nano letters.

[27]  Rajaram Bhat,et al.  Single quantum wire semiconductor lasers , 1989 .

[28]  Andrew J. Shields,et al.  Modulation of single quantum dot energy levels by a surface-acoustic-wave , 2008 .

[29]  Xiang Zhou,et al.  A review of MBE grown 0D, 1D and 2D quantum structures in a nanowire , 2013 .

[30]  A Gustafsson,et al.  Self-assembled quantum dots in a nanowire system for quantum photonics. , 2013, Nature materials.

[31]  Rudolf Hey,et al.  Photon anti-bunching in acoustically pumped quantum dots , 2009 .

[32]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[33]  G. Abstreiter,et al.  Prismatic quantum heterostructures synthesized on molecular-beam epitaxy GaAs nanowires. , 2008, Small.

[34]  P. Santos,et al.  Transport and lifetime enhancement of photoexcited spins in GaAs by surface acoustic waves. , 2001, Physical review letters.

[35]  Achim Wixforth,et al.  Acoustically regulated carrier injection into a single optically active quantum dot , 2013, 1306.5954.

[36]  C. Somaschini,et al.  Acoustically driven photon antibunching in nanowires. , 2012, Nano letters.

[37]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[38]  M. Regler,et al.  Controlling exciton decay dynamics in semiconducting single-walled carbon nanotubes by surface acoustic waves , 2013 .

[39]  Val Zwiller,et al.  Electric field induced removal of the biexciton binding energy in a single quantum dot. , 2011, Nano letters.

[40]  T. A. Truong,et al.  Direct observation of dynamic surface acoustic wave controlled carrier injection into single quantum posts using phase-resolved optical spectroscopy , 2010, 1011.1898.

[41]  Achim Wixforth,et al.  Experimental investigation towards a periodically pumped single-photon source , 2006 .

[42]  M. S. Skolnick,et al.  Homogeneous array of nanowire-embedded quantum light emitters. , 2013, Nano letters.

[43]  V. L. Korenev,et al.  Optical Signatures of Coupled Quantum Dots , 2006, Science.

[44]  Chenming Hu,et al.  Ultra-thin silicon dioxide leakage current and scaling limit , 1992, 1992 Symposium on VLSI Technology Digest of Technical Papers.

[45]  Val Zwiller,et al.  Single electron charging in optically active nanowire quantum dots. , 2010, Nano letters.

[46]  G. Abstreiter,et al.  Coupled quantum dots fabricated by cleaved edge overgrowth: from artificial atoms to molecules , 1997, Science.

[47]  Achim Wixforth,et al.  Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves. , 2014, Nano letters.

[48]  J. Morante,et al.  InAs quantum dot arrays decorating the facets of GaAs nanowires. , 2010, ACS nano.

[49]  A. Govorov,et al.  Measurement of coherent tunneling between InGaAs quantum wells and InAs quantum dots using photoluminescence spectroscopy , 2010 .

[50]  D. Bouwmeester,et al.  Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons , 2011, 1205.1346.

[51]  A. Bertoni,et al.  High mobility one- and two-dimensional electron systems in nanowire-based quantum heterostructures. , 2013, Nano letters.

[52]  G. Solomon,et al.  Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves. , 2010, Physical review letters.

[53]  Fred H. Pollak,et al.  Piezo-Electroreflectance in Ge, GaAs, and Si , 1968 .

[54]  Brunner,et al.  Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. , 1994, Physical review letters.

[55]  C. Hu,et al.  Hole injection SiO/sub 2/ breakdown model for very low voltage lifetime extrapolation , 1994 .

[56]  Andreas D. Wieck,et al.  Electrons surfing on a sound wave as a platform for quantum optics with flying electrons , 2011, Nature.