A Low-Profile Printed Planar Phase Correcting Surface to Improve Directive Radiation Characteristics of Electromagnetic Band Gap Resonator Antennas

This communication presents a method to enhance the radiation performance of conventional electromagnetic band gap resonator antennas (ERAs) by improving their aperture phase distributions. A low-profile printed planar phase correcting surface (PCS) was designed and fabricated to demonstrate performance enhancement. Measurements of a prototype demonstrated that the PCS significantly enhances the directive radiation properties of ERAs. This includes an 8 dB increase in peak directivity, 60% reduction in 3 dB beamwidth (from 35° to 14°), and a considerable reduction in side lobe levels.

[1]  A. Petosa,et al.  Using Rotatable Planar Phase Shifting Surfaces to Steer a High-Gain Beam , 2013, IEEE Transactions on Antennas and Propagation.

[2]  M.H.A.J. Herben,et al.  Millimeter-wave Fresnel zone planar lens and antenna , 1995, Proceedings of 1995 IEEE MTT-S International Microwave Symposium.

[3]  Derek A. McNamara,et al.  Thin phase-correcting lens antennas made using a three-layer phase-shifting surface (PSS) at Ka band , 2010, 2010 14th International Symposium on Antenna Technology and Applied Electromagnetics & the American Electromagnetics Conference.

[4]  Karu P. Esselle,et al.  Dielectric Phase-Correcting Structures for Electromagnetic Band Gap Resonator Antennas , 2015, IEEE Transactions on Antennas and Propagation.

[5]  Wei Hong,et al.  A zoned two-layer flat lens design , 2011, 2011 International Workshop on Antenna Technology (iWAT).

[6]  Barry C. Sanders,et al.  High-gain 1D EBG resonator antenna , 2005 .

[7]  M. R. Chaharmir,et al.  A Wideband Transmitarray Using Dual-Resonant Double Square Rings , 2010, IEEE Transactions on Antennas and Propagation.

[8]  T. I. Yuk,et al.  Planar Monopoles with Different Radiator Shapes for UWB Body-Centric Wireless Communications , 2013 .

[9]  A. Petosa,et al.  Printed Hybrid Lens Antenna , 2012, IEEE Transactions on Antennas and Propagation.

[10]  Jørgen Bach Andersen Wireless Communications: Present and Future Technologies , 2004 .

[11]  Masaharu Fujita,et al.  Design and analysis of a folded Fresnel Zone Plate antenna , 1994 .

[12]  A. Petosa,et al.  Thin Microwave Quasi-Transparent Phase-Shifting Surface (PSS) , 2010, IEEE Transactions on Antennas and Propagation.

[13]  A. S. Andrenko,et al.  Dual-band patch antenna with monopole-like radiation patterns for BAN communications , 2013, 2013 7th European Conference on Antennas and Propagation (EuCAP).

[14]  N. Behdad,et al.  Wideband Planar Microwave Lenses Using Sub-Wavelength Spatial Phase Shifters , 2011, IEEE Transactions on Antennas and Propagation.

[15]  Wei Hong,et al.  Systematic design of planar lenses using artificial dielectrics , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[16]  RongLin Li,et al.  Optically controlled reconfigurable antenna for cognitive radio applications , 2011 .

[17]  H. D. Hristov,et al.  Millimeter-wave Fresnel zone planar lens and antenna , 1995, Proceedings of 1995 IEEE MTT-S International Microwave Symposium.

[18]  Wei Lu,et al.  Reflection and Transmission , 2018 .