Impact of 3-D structures on directional effective emissivity in urban areas based on DART model

[1]  Maomao Zhang,et al.  Ventilation analysis of urban functional zoning based on circuit model in Guangzhou in winter, China , 2023, Urban Climate.

[2]  J. Voogt,et al.  Satellite-based daytime urban thermal anisotropy: A comparison of 25 global cities , 2022, Remote Sensing of Environment.

[3]  Bin Tong,et al.  Predicting the impacts of urban land change on LST and carbon storage using InVEST, CA-ANN and WOA-LSTM models in Guangzhou, China , 2022, Earth Science Informatics.

[4]  Muhammad Tauhidur Rahman,et al.  Assessing the impacts of vegetation cover loss on surface temperature, urban heat island and carbon emission in Penang city, Malaysia , 2022, Building and Environment.

[5]  Zullyadini A. Rahaman,et al.  Impact of vegetation cover loss on surface temperature and carbon emission in a fastest-growing city, Cumilla, Bangladesh , 2021, Building and Environment.

[6]  Wenfeng Zhan,et al.  Assessment of different kernel-driven models for daytime urban thermal radiation directionality simulation , 2021 .

[7]  Chuanrong Li,et al.  A Four-Component Parameterized Directional Thermal Radiance Model for Row Canopies , 2021, IEEE Transactions on Geoscience and Remote Sensing.

[8]  G. Cardoso,et al.  Land surface temperature and vegetation index as a proxy to microclimate , 2021 .

[9]  E. S. Krayenhoff,et al.  Modeling the angular effect of MODIS LST in urban areas: A case study of Toulouse, France , 2021, Remote Sensing of Environment.

[10]  Zunjian Bian,et al.  A general framework of kernel-driven modeling in the thermal infrared domain , 2021, Remote Sensing of Environment.

[11]  Xia Zhang,et al.  Impact of 3-D Structures and Their Radiation on Thermal Infrared Measurements in Urban Areas , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[12]  J. Gastellu-Etchegorry,et al.  DART radiative transfer modelling for sloping landscapes , 2020, Remote Sensing of Environment.

[13]  Zunjian Bian,et al.  A review of earth surface thermal radiation directionality observing and modeling: Historical development, current status and perspectives , 2019, Remote Sensing of Environment.

[14]  Yongming Du,et al.  Directional variation in surface emissivity inferred from the MYD21 product and its influence on estimated surface upwelling longwave radiation , 2019, Remote Sensing of Environment.

[15]  Donghui Xie,et al.  LESS: LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes , 2019, Remote Sensing of Environment.

[16]  Dandan Wang,et al.  A geometric model to simulate thermal anisotropy over a sparse urban surface (GUTA-sparse) , 2018 .

[17]  Feng Chen,et al.  Effect of emissivity uncertainty on surface temperature retrieval over urban areas: Investigations based on spectral libraries , 2016 .

[18]  Massimo Menenti,et al.  Modeling the effective emissivity of the urban canopy using sky view factor , 2015 .

[19]  Martin J. Wooster,et al.  Derivation of an urban materials spectral library through emittance and reflectance spectroscopy , 2014 .

[20]  Susanne Lehner,et al.  Simultaneous Measurements by Advanced SAR and Radar Altimeter on Potential Improvement of Ocean Wave Model Assimilation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Jie Cheng,et al.  Effects of Thermal-Infrared Emissivity Directionality on Surface Broadband Emissivity and Longwave Net Radiation Estimation , 2014, IEEE Geoscience and Remote Sensing Letters.

[22]  Mitchell D. Goldberg,et al.  Angular anisotropy of satellite observations of land surface temperature , 2012 .

[23]  C.Y. Jim,et al.  Estimating heat flux transmission of vertical greenery ecosystem , 2011 .

[24]  Zhao-Liang Li,et al.  Angular effect of MODIS emissivity products and its application to the split-window algorithm , 2011 .

[25]  Xavier Briottet,et al.  Thermal infrared radiance simulation with aggregation modeling (TITAN): an infrared radiative transfer model for heterogeneous three-dimensional surface--application over urban areas. , 2008, Applied optics.

[26]  V. Masson,et al.  Simulation of fall and winter surface energy balance over a dense urban area using the TEB scheme , 2008 .

[27]  James A. Voogt,et al.  Assessment of an Urban Sensor View Model for thermal anisotropy , 2008 .

[28]  Wenhan Qin,et al.  An Extended 3-D Radiosity–Graphics Combined Model for Studying Thermal-Emission Directionality of Crop Canopy , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[29]  R. Giering,et al.  Retrieving surface parameters for climate models from Moderate Resolution Imaging Spectroradiometer (MODIS)-Multiangle Imaging Spectroradiometer (MISR) Albedo Products , 2007 .

[30]  E. Scott Krayenhoff,et al.  A microscale three-dimensional urban energy balance model for studying surface temperatures , 2007 .

[31]  Marie K. Svensson,et al.  Sky view factor analysis – implications for urban air temperature differences , 2004 .

[32]  Timothy R. Oke,et al.  A Model to Calculate what a Remote Sensor `Sees' of an Urban Surface , 2004 .

[33]  Jean-Philippe Gastellu-Etchegorry,et al.  Thermal infrared radiative transfer within three-dimensional vegetation covers , 2003 .

[34]  Jindi Wang,et al.  The definition of effective emissivity of land surface at the scale of remote sensing pixels , 1999 .

[35]  A. Strahler,et al.  Scale effects and scaling-up by geometric-optical model , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[36]  Shuichi Rokugawa,et al.  A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..

[37]  K. Blennow Sky View Factors from High-Resolution Scanned Fish-eye Lens Photographic Negatives , 1995 .

[38]  J. Norman,et al.  Terminology in thermal infrared remote sensing of natural surfaces , 1995 .

[39]  Francis Zagolski,et al.  Modeling radiative transfer in heterogeneous 3D vegetation canopies , 1995, Remote Sensing.

[40]  T. J. Lyons,et al.  Simulation of surface urban heat islands under ‘IDEAL’ conditions at night part 1: Theory and tests against field data , 1991 .

[41]  I. D. Watson,et al.  Graphical estimation of sky view-factors in urban environments , 1987 .

[42]  Jeff Dozier,et al.  Effect of Viewing Angle on the Infrared Brightness Temperature of Snow , 1982 .

[43]  T. Oke Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations , 1981 .

[44]  William E. Reifsnyder,et al.  Radiation geometry in the measurement and interpretation of radiation balance , 1967 .

[45]  J. Gastellu-Etchegorry,et al.  Optimizing the Protocol of Near-Surface Remote Sensing Experiments Over Heterogeneous Canopy Using DART Simulated Images , 2023, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Sun Ha,et al.  A kernel model for urban surface thermal emissivity anisotropy and its uncertainties , 2015 .

[47]  Zhou Ji,et al.  Thermal anisotropy model for simulated three dimensional urban targets , 2013, National Remote Sensing Bulletin.

[48]  J. Meseguer,et al.  Thermal radiation heat transfer , 2012 .

[49]  Timothy R. Oke,et al.  Effects of urban surface geometry on remotely-sensed surface temperature , 1998 .

[50]  Fran Li,et al.  Surface temperature and emissivity at various scales: Definition, measurement and related problems , 1995 .