Key computational modeling issues in Integrated Computational Materials Engineering

Designing materials for targeted performance requirements as required in Integrated Computational Materials Engineering (ICME) demands a combined strategy of bottom-up and top-down modeling and simulation which treats various levels of hierarchical material structure as a mathematical representation, with infusion of systems engineering and informatics to deal with differing model degrees of freedom and uncertainty. Moreover, with time, the classical materials selection approach is becoming generalized to address concurrent design of microstructure or mesostructure to satisfy product-level performance requirements. Computational materials science and multiscale mechanics models play key roles in evaluating performance metrics necessary to support materials design. The interplay of systems-based design of materials with multiscale modeling methodologies is at the core of materials design. In high performance alloys and composite materials, maximum performance is often achieved within a relatively narrow window of process path and resulting microstructures. Much of the attention to ICME in the materials community has focused on the role of generating and representing data, including methods for characterization and digital representation of microstructure, as well as databases and model integration. On the other hand, the computational mechanics of materials and multidisciplinary design optimization communities are grappling with many fundamental issues related to stochasticity of processes and uncertainty of data, models, and multiscale modeling chains in decision-based design. This paper explores computational and information aspects of design of materials with hierarchical microstructures and identifies key underdeveloped elements essential to supporting ICME. One of the messages of this overview paper is that ICME is not simply an assemblage of existing tools, for such tools do not have natural interfaces to material structure nor are they framed in a way that quantifies sources of uncertainty and manages uncertainty in representing physical phenomena to support decision-based design.

[1]  Robert E. Rudd,et al.  COARSE-GRAINED MOLECULAR DYNAMICS AND THE ATOMIC LIMIT OF FINITE ELEMENTS , 1998 .

[2]  Jing Li,et al.  Validating Designs Through Sequential Simulation-Based Optimization , 2010, DAC 2010.

[3]  John Hinde,et al.  Statistical Modelling in R , 2009 .

[4]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[5]  James O. Berger,et al.  A Framework for Validation of Computer Models , 2007, Technometrics.

[6]  Min Zhou,et al.  Micromechanical Simulation of Dynamic Fracture Using the Cohesive Finite Element Method , 2004 .

[7]  A. Needleman Micromechanical modelling of interfacial decohesion , 1992 .

[8]  Amit Acharya,et al.  A model of crystal plasticity based on the theory of continuously distributed dislocations , 2001 .

[9]  Krishna Rajan,et al.  Informatics for combinatorial materials science , 2008 .

[10]  G. Proust,et al.  Integration of Microstructure-Sensitive Design with Finite Element Methods: Elastic-Plastic Case Studies in FCC Polycrystals , 2007 .

[11]  Farrokh Mistree,et al.  Managing Uncertainty in Multiscale Systems via Simulation Model Refinement , 2011, DAC 2011.

[12]  Vasily V. Bulatov,et al.  A Multiscale Model of Plasticity Based on Discrete Dislocation Dynamics , 2002 .

[13]  S. Ahzi,et al.  Statistical continuum theory for large plastic deformation of polycrystalline materials , 2001 .

[14]  Wing Kam Liu,et al.  Multi-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels , 2004 .

[15]  Mark J. Beran,et al.  Statistical Continuum Theories , 1968 .

[16]  Christiaan J. J. Paredis,et al.  Using Support Vector Machines to Formalize the Valid Input Domain of Predictive Models in Systems Design Problems , 2010 .

[17]  D. Fullwood,et al.  Optimized structure based representative volume element sets reflecting the ensemble-averaged 2-point statistics , 2010 .

[18]  H. Zandbergen,et al.  Application of the dual‐beam FIB/SEM to metals research , 2004, Journal of microscopy.

[19]  Christiaan J. J. Paredis,et al.  Validating behavioral models for reuse , 2007 .

[20]  D. E. Carlson,et al.  An introduction to thermomechanics , 1983 .

[21]  Robert E. Rudd,et al.  Concurrent Coupling of Length Scales in Solid State Systems , 2000 .

[22]  Michael Ortiz,et al.  Mixed Atomistic and Continuum Models of Deformation in Solids , 1996 .

[23]  P. Midgley,et al.  3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. , 2003, Ultramicroscopy.

[24]  Surya R. Kalidindi,et al.  Formulation and calibration of higher-order elastic localization relationships using the MKS approach , 2011 .

[25]  Peter W. Chung,et al.  On a formulation for a multiscale atomistic-continuum homogenization method , 2003 .

[26]  J. Tinsley Oden,et al.  MultiScale Modeling of Physical Phenomena: Adaptive Control of Models , 2006, SIAM J. Sci. Comput..

[27]  Franck J. Vernerey,et al.  Multi-scale micromorphic theory for hierarchical materials , 2007 .

[28]  Lawrence D. Pohlmann,et al.  The Engineering Design of Systems – Models and Methods , 2000 .

[29]  David T. Fullwood,et al.  Generalized Pareto front methods applied to second-order material property closures , 2007 .

[30]  Surya R. Kalidindi,et al.  Microstructure Informatics Using Higher-Order Statistics and Efficient Data-Mining Protocols , 2011 .

[31]  Harold S. Park,et al.  Bridging Scale Methods for Nanomechanics and Materials , 2006 .

[32]  N. M. Ghoniem,et al.  A review of experimental observations and theoretical models of dislocation cells and subgrains , 1988 .

[33]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[34]  J. A. Cherry,et al.  Distortion Analysis of Weakly Nonlinear Filters Using Volterra Series , 1994 .

[35]  William L. Oberkampf,et al.  Estimation of Total Uncertainty in Modeling and Simulation , 2000 .

[36]  Min Zhou Thermomechanical continuum representation of atomistic deformation at arbitrary size scales , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  William A. Curtin,et al.  Coupled Atomistic/Discrete Dislocation Simulations of Nanoindentation at Finite Temperature , 2005 .

[38]  Genichi Taguchi,et al.  Introduction to quality engineering.... , 2014 .

[39]  I. Hunter,et al.  The identification of nonlinear biological systems: Volterra kernel approaches , 1996, Annals of Biomedical Engineering.

[40]  Farrokh Mistree,et al.  A procedure for robust design: Minimizing variations caused by noise factors and control factors , 1996 .

[41]  O. Sigmund,et al.  Multiphase composites with extremal bulk modulus , 2000 .

[42]  S. Torquato,et al.  Design of materials with extreme thermal expansion using a three-phase topology optimization method , 1997 .

[43]  Farrokh Mistree,et al.  Model refinement decisions using the process performance indicator , 2011 .

[44]  David L. McDowell,et al.  A second gradient theoretical framework for hierarchical multiscale modeling of materials , 2010 .

[45]  David L. McDowell,et al.  Viscoplasticity of heterogeneous metallic materials , 2008 .

[46]  O. Sigmund Tailoring materials with prescribed elastic properties , 1995 .

[47]  G. Milton The Theory of Composites , 2002 .

[48]  Brent L. Adams,et al.  Bounding elastic constants of an orthotropic polycrystal using measurements of the microstructure , 1996 .

[49]  David L. McDowell,et al.  Equivalent continuum for dynamically deforming atomistic particle systems , 2002 .

[50]  Yunzhi Wang,et al.  Modeling Dislocation Network and Dislocation–Precipitate Interaction at Mesoscopic Scale Using Phase Field Method , 2003 .

[51]  David L. McDowell,et al.  Simulation-assisted materials design for the concurrent design of materials and products , 2007 .

[52]  F. Hemez,et al.  Bayesian Model Screening for the Identification of Nonlinear Mechanical Structures , 2003 .

[53]  Panayotis G. Kevrekidis,et al.  Deciding the Nature of the Coarse Equation through Microscopic Simulations: The Baby-Bathwater Scheme , 2007, SIAM Rev..

[54]  E. B. Tadmor,et al.  Quasicontinuum models of interfacial structure and deformation , 1998 .

[55]  Surya R. Kalidindi,et al.  Microstructure informatics using higher-order statistics and efficient data-mining protocols , 2011 .

[56]  L. P. Kubin,et al.  The modelling of dislocation patterns , 1992 .

[57]  Mark S. Shephard,et al.  Adaptive Model Selection Procedure for Concurrent Multiscale Problems , 2007 .

[58]  Shaoxing Qu,et al.  A finite-temperature dynamic coupled atomistic/discrete dislocation method , 2005 .

[59]  H. Garmestani,et al.  Statistical continuum theory for inelastic behavior of a two-phase medium , 1998 .

[60]  Dan Backman,et al.  Integrated computational materials engineering: A new paradigm for the global materials profession , 2006 .

[61]  Sankaran Mahadevan,et al.  Model validation under epistemic uncertainty , 2011, Reliab. Eng. Syst. Saf..

[62]  E. Tadmor,et al.  Finite-temperature quasicontinuum: molecular dynamics without all the atoms. , 2005, Physical review letters.

[63]  Youping Chen,et al.  Reformulation of microscopic balance equations for multiscale materials modeling. , 2009, The Journal of chemical physics.

[64]  Jianmin Qu,et al.  Dislocation nucleation from bicrystal interfaces and grain boundary ledges: Relationship to nanocrystalline deformation , 2007 .

[65]  Graeme W. Milton,et al.  Theory of Composites. Cambridge Monographs on Applied and Computational Mathematics , 2003 .

[66]  Farrokh Mistree,et al.  The Validation Square: How Does One Verify and Validate a Design Method? , 2006 .

[67]  T. A. Mason,et al.  Use of microstructural statistics in predicting polycrystalline material properties , 1999 .

[68]  Amit Acharya,et al.  Continuum theory and methods for coarse-grained, mesoscopic plasticity , 2006 .

[69]  Carlo Bottani Modelling small deformations of polycrystals: edited by J. Gittus and J. Zarka; published by Elsevier Applied Science Publishers, London, 1986 , 1987 .

[70]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[71]  W. E,et al.  Matching conditions in atomistic-continuum modeling of materials. , 2001, Physical review letters.

[72]  Axel van de Walle,et al.  Building effective models from sparse but precise data: Application to an alloy cluster expansion model , 2009, 0908.0659.

[73]  Ju Li,et al.  The Mechanics and Physics of Defect Nucleation , 2007 .

[74]  William A. Curtin,et al.  A coupled atomistic/continuum model of defects in solids , 2002 .

[75]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[76]  Russell S. Peak,et al.  TOWARDS REUSABLE KNOWLEDGE-BASED IDEALIZATIONS FOR RAPID DESIGN AND ANALYSIS , 2004 .

[77]  Min Zhou,et al.  Deterministic and stochastic analyses of fracture processes in a brittle microstructure system , 2005 .

[78]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[79]  Alberto M. Cuitiño,et al.  Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations , 2001 .

[80]  Zi-kui Liu First-Principles Calculations and CALPHAD Modeling of Thermodynamics , 2009 .

[81]  Farrokh Mistree,et al.  An Inductive Design Exploration Method for the Integrated Design of Multi-scale Materials and Products , 2005, DAC 2005.

[82]  E. Kröner Bounds for effective elastic moduli of disordered materials , 1977 .

[83]  Alex Zunger,et al.  Searching for alloy configurations with target physical properties: impurity design via a genetic algorithm inverse band structure approach. , 2006, Physical review letters.

[84]  Robert G. Sargent,et al.  Verification and validation of simulation models , 2013, Proceedings of Winter Simulation Conference.

[85]  V. Kreinovich,et al.  Experimental uncertainty estimation and statistics for data having interval uncertainty. , 2007 .

[86]  Michael Ortiz,et al.  A variational approach to coarse-graining of equilibrium and non-equilibrium atomistic description at finite temperature , 2007 .

[87]  Jean-François Molinari,et al.  Atomistic based continuum investigation of plastic deformation in nanocrystalline copper , 2006 .

[88]  G. B. Olson,et al.  Computational Design of Hierarchically Structured Materials , 1997 .

[89]  David L. McDowell,et al.  Simulation-Assisted Design and Accelerated Insertion of Materials , 2011 .

[90]  Gary G. R. Green,et al.  Calculation of the Volterra kernels of non-linear dynamic systems using an artificial neural network , 1994, Biological Cybernetics.

[91]  Lucille A. Giannuzzi,et al.  Introduction to focused ion beams : instrumentation, theory, techniques, and practice , 2010 .

[92]  Sang-Hoon Lee,et al.  A comparative study of uncertainty propagation methods for black-box-type problems , 2008 .

[93]  M. Kokkolaras,et al.  Probabilistic Analytical Target Cascading: A Moment Matching Formulation for Multilevel Optimization Under Uncertainty , 2006, DAC 2005.

[94]  Farrokh Mistree,et al.  THE COMPROMISE DECISION SUPPORT PROBLEM AND THE ADAPTIVE LINEAR PROGRAMMING ALGORITHM , 1998 .

[95]  Daryl C. Chrzan,et al.  Scaling of microstructural parameters: Misorientations of deformation induced boundaries , 1996 .

[96]  Mark F. Horstemeyer,et al.  Multiscale modeling of the plasticity in an aluminum single crystal , 2009 .

[97]  Amit Acharya Driving forces and boundary conditions in continuum dislocation mechanics , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[98]  Michael Ortiz,et al.  Quasicontinuum simulation of fracture at the atomic scale , 1998 .

[99]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[100]  Milo R. Dorr,et al.  Coupling of Atomistic and Meso-scale Phase-field Modeling of Rapid Solidification , 2009 .

[101]  Derek H. Warner,et al.  Coupling quantum and continuum scales to predict crack tip dislocation nucleation , 2010 .

[102]  Farrokh Mistree,et al.  Integrated Design of Multiscale, Multifunctional Materials and Products , 2009 .

[103]  Surya R. Kalidindi,et al.  Multi-scale modeling of elastic response of three-dimensional voxel-based microstructure datasets using novel DFT-based knowledge systems , 2010 .

[104]  S. Kaplan,et al.  On The Quantitative Definition of Risk , 1981 .

[105]  Robert G. Sargent,et al.  Verification and validation: verification and validation of simulation models , 2003, WSC '03.

[106]  H. Bunge Texture Analysis in Materials Science , 1982 .

[107]  David L. McDowell,et al.  Microstructure-sensitive modeling of polycrystalline IN 100 , 2008 .

[108]  Stefano Curtarolo,et al.  Dynamics of an inhomogeneously coarse grained multiscale system. , 2002, Physical review letters.

[109]  Hae-Jin Choi,et al.  A Robust Design Method for Model and Propagated Uncertainty , 2005 .

[110]  T. Lu,et al.  On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity , 2001 .

[111]  Panos Y. Papalambros,et al.  Analytical Target Cascading in Automotive Vehicle Design , 2001 .

[112]  Farrokh Mistree,et al.  Robust Design for Multiscale and Multidisciplinary Applications , 2006 .

[113]  Surya R. Kalidindi,et al.  Thermo-Elastic Localization Relationships for Multi-Phase Composites , 2010 .

[114]  Emily A. Carter,et al.  Coupled Quantum–Atomistic and Quantum–Continuum Mechanics Methods in Materials Research , 2007 .

[115]  Richard Alan Lesar,et al.  Issues in the coarse-graining of dislocation energetics and dynamics , 2006 .

[116]  John Rumble,et al.  A Perspective on Materials Databases , 2012, Data Sci. J..

[117]  Wei Chen,et al.  A Design-Driven Validation Approach Using Bayesian Prediction Models , 2008 .

[118]  P. Cloetens,et al.  X-ray micro-tomography an attractive characterisation technique in materials science , 2003 .

[119]  D. McDowell A perspective on trends in multiscale plasticity , 2010 .

[120]  Farrokh Mistree,et al.  An inductive design exploration method for hierarchical systems design under uncertainty , 2008 .

[121]  Surya R. Kalidindi,et al.  Fast computation of first-order elastic–plastic closures for polycrystalline cubic-orthorhombic microstructures , 2007 .

[122]  Carsten Carstensen,et al.  Non–convex potentials and microstructures in finite–strain plasticity , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[123]  Surya R. Kalidindi,et al.  Delineation of first-order closures for plastic properties requiring explicit consideration of strain hardening and crystallographic texture evolution , 2008 .

[124]  Somnath Ghosh,et al.  A multi-level computational model for multi-scale damage analysis in composite and porous materials , 2001 .

[125]  A. Fazekas,et al.  A new methodology based on X-ray micro-tomography to estimate stress concentrations around inclusions in high strength steels , 2009 .

[126]  C. Przybyla,et al.  Methodology for recovering and analyzing two-point pair correlation functions in polycrystalline materials , 2006 .

[127]  S. Torquato Random Heterogeneous Materials , 2002 .

[128]  Teddy Craciunescu,et al.  3D X-ray micro-tomography for modeling of NB3SN multifilamentary superconducting wires , 2007 .

[129]  D. Parks,et al.  Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density , 1999 .

[130]  S. Kalidindi,et al.  Finite approximations to the second-order properties closure in single phase polycrystals , 2005 .

[131]  M. M. Neves,et al.  Optimal design of periodic linear elastic microstructures , 2000 .

[132]  A. Gokhale,et al.  Constraints on microstructural two-point correlation functions , 2005 .

[133]  Panayotis G. Kevrekidis,et al.  Deciding the Nature of the Coarse Equation through Microscopic Simulations: The Baby-Bathwater Scheme , 2003, Multiscale Model. Simul..

[134]  D. Ross Computer-aided design , 1961, CACM.

[135]  David L. McDowell,et al.  Representation and computational structure-property relations of random media , 2011 .

[136]  Thaweepat Buranathiti,et al.  Model validation via uncertainty propagation and data transformations , 2004 .

[137]  Richard G. Forbes,et al.  Atom probe tomography , 2000 .

[138]  G. Proust,et al.  Procedures for construction of anisotropic elastic–plastic property closures for face-centered cubic polycrystals using first-order bounding relations , 2006 .

[139]  Michael Zaiser,et al.  Statistical modelling of dislocation systems , 2001 .

[140]  Farrokh Mistree,et al.  Product platform design: method and application , 2001 .

[141]  Harold S. Park,et al.  An introduction to computational nanomechanics and materials , 2004 .

[142]  Anubhav Jain,et al.  Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.

[143]  Stefan Diebels,et al.  A second‐order homogenization procedure for multi‐scale analysis based on micropolar kinematics , 2007 .

[144]  Wei Chen,et al.  Efficient Random Field Uncertainty Propagation in Design Using Multiscale Analysis , 2009 .

[145]  Surya R. Kalidindi,et al.  A Novel Framework for Building Materials Knowledge Systems , 2010 .

[146]  Christiaan J. J. Paredis,et al.  SIMULATION MODEL REFINEMENT FOR DECISION MAKING VIA A VALUE-OF-INFORMATION BASED METRIC , 2006, DAC 2006.

[147]  D. C. Drucker Material Response and Continuum Relations; or From Microscales to Macroscales , 1984 .

[148]  John R. Rice,et al.  Plastic creep flow effects in the diffusive cavitation of grain boundaries , 1980 .

[149]  Farrokh Mistree,et al.  Model Selection Under Limited Information Using a Value-of-Information-Based Indicator , 2010 .

[150]  Doris Kuhlmann-Wilsdorf,et al.  Theory of plastic deformation: - properties of low energy dislocation structures , 1989 .

[151]  Surya R. Kalidindi,et al.  Elastic–plastic property closures for hexagonal close-packed polycrystalline metals using first-order bounding theories , 2007 .

[152]  Daniel Pierre Thunnissen,et al.  Propagating and Mitigating Uncertainty in the Design of Complex Multidisciplinary Systems , 2005 .

[153]  Yuksel C. Yabansu,et al.  Understanding and visualizing microstructure and microstructure variance as a stochastic process , 2011 .

[154]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[155]  Charles H. Ward Materials Genome Initiative for Global Competitiveness , 2012 .

[156]  G. Spanos,et al.  Three-dimensional analysis of grain topology and interface curvature in a β-titanium alloy , 2010 .

[157]  Vito Volterra,et al.  Theory of Functionals and of Integral and Integro-Differential Equations , 2005 .

[158]  Anet,et al.  A ROBUST CONCEPT EXPLORATION METHOD FOR ENHANCING PRODUCTIVITY IN CONCURRENT SYSTEMS DESIGN , 1997 .

[159]  S. Phillpot,et al.  Role of grain rotation during grain growth in a columnar microstructure by mesoscale simulation , 2002 .

[160]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .

[161]  Somnath Ghosh,et al.  Concurrent multi-level model for damage evolution in microstructurally debonding composites , 2007 .

[162]  David R. Oakley,et al.  Performance optimization of multidisciplinary mechanical systems subject to uncertainties , 1998 .

[163]  David L. McDowell,et al.  Concurrent design of hierarchical materials and structures , 2008 .

[164]  Robert E. Rudd,et al.  Coarse-grained molecular dynamics: Nonlinear finite elements and finite temperature , 2005 .

[165]  P. Suquet,et al.  Elements of Homogenization Theory for Inelastic Solid Mechanics, in Homogenization Techniques for Composite Media , 1987 .

[166]  David L. McDowell,et al.  Internal State Variable Theory , 2005 .

[167]  Tao Jiang,et al.  Target Cascading in Optimal System Design , 2003, DAC 2000.

[168]  Ricardo Valerdi,et al.  THE CONSTRUCTIVE SYSTEMS ENGINEERING COST MODEL (COSYSMO) , 2005 .

[169]  Surya R. Kalidindi,et al.  Building texture evolution networks for deformation processing of polycrystalline fcc metals using spectral approaches: Applications to process design for targeted performance , 2010 .

[170]  David R. Oakley,et al.  Multidisciplinary Stochastic Optimization , 1995 .

[171]  David T. Fullwood,et al.  Microstructure Sensitive Design for Performance Optimization , 2012 .

[172]  Jon C. Helton,et al.  Alternative representations of epistemic uncertainty , 2004, Reliab. Eng. Syst. Saf..

[173]  Xiaoping Du,et al.  Efficient Uncertainty Analysis Methods for Multidisciplinary Robust Design , 2002 .

[174]  H. Garmestani,et al.  Microstructure-sensitive design of a compliant beam , 2001 .

[175]  Ilke Arslan,et al.  Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. , 2008, Ultramicroscopy.

[176]  Yang Liu,et al.  Macroscopic properties and field fluctuations in model power-law polycrystals: full-field solutions versus self-consistent estimates , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[177]  Masato Kawamukai,et al.  A multiscale approach for modeling scale-dependent yield stress in polycrystalline metals , 2007 .

[178]  David L. McDowell,et al.  Materials design: a useful research focus for inelastic behavior of structural metals , 2001 .

[179]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[180]  Brian Puchala,et al.  Collecting and analyzing microstructures in three dimensions: A fully automated approach , 2003 .

[181]  J. Spowart Automated serial sectioning for 3-D analysis of microstructures , 2006 .

[182]  Amit Acharya,et al.  New Perspectives in Plasticity Theory: Dislocation Nucleation, Waves, and Partial Continuity of Plastic Strain Rate , 2008 .

[183]  István Groma,et al.  Link between the microscopic and mesoscopic length-scale description of the collective behavior of dislocations , 1997 .

[184]  V. Kouznetsova,et al.  Multi-scale second-order computational homogenization of multi-phase materials : a nested finite element solution strategy , 2004 .

[185]  Nicholas Zabaras Advanced Computational Techniques for Materials-by-Design , 2004 .

[186]  David L. McDowell,et al.  ESSENTIAL FEATURES OF FINE SCALE BOUNDARY CONDITIONS FOR SECOND GRADIENT MULTISCALE HOMOGENIZATION OF STATISTICAL VOLUME ELEMENTS , 2012 .

[187]  Gregorio D'Agostino,et al.  Microstructure evolution from the atomic scale up , 2002 .

[188]  Farrokh Mistree,et al.  A systems-based approach for integrated design of materials, products and design process chains , 2007 .

[189]  Torben Leffers,et al.  Lattice Rotations during Plastic Deformation with Grain Subdivision , 1994 .

[190]  H. Bunge Texture Analysis in Materials Science: Mathematical Methods , 2013 .

[191]  Hugh McManus,et al.  A framework for understanding uncertainty and its mitigation and exploitation in complex systems , 2006, IEEE Engineering Management Review.

[192]  John E. Renaud,et al.  Reliability-based design using variable-fidelity optimization , 2006 .

[193]  Christiaan J. J. Paredis,et al.  A value-of-information based approach to simulation model refinement , 2008 .

[194]  John E. Renaud,et al.  Worst case propagated uncertainty of multidisciplinary systems in robust design optimization , 2000 .

[195]  Ronald A. Howard,et al.  Information Value Theory , 1966, IEEE Trans. Syst. Sci. Cybern..

[196]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[197]  Hussein M. Zbib,et al.  A multiscale model of plasticity , 2002 .

[198]  H. Garmestani,et al.  Statistical continuum mechanics analysis of an elastic two-isotropic-phase composite material , 2000 .

[199]  J. Buffière,et al.  Three-dimensional study of a fretting crack using synchrotron X-ray micro-tomography , 2007 .

[200]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[201]  Ting Zhu,et al.  Temperature and strain-rate dependence of surface dislocation nucleation. , 2008, Physical review letters.

[202]  Ting Zhu,et al.  Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals , 2007, Proceedings of the National Academy of Sciences.

[203]  Laurent Stainier,et al.  A theory of subgrain dislocation structures , 2000 .

[204]  Farrokh Mistree,et al.  An Inductive Design Exploration Method for Robust Multiscale Materials Design , 2008 .

[205]  Peter Gumbsch,et al.  An atomistic study of brittle fracture: Toward explicit failure criteria from atomistic modeling , 1995 .

[206]  D. Fullwood,et al.  Delineation of the space of 2-point correlations in a composite material system , 2008 .

[207]  Y. W. Lee,et al.  Measurement of the Wiener Kernels of a Non-linear System by Cross-correlation† , 1965 .

[208]  David J. Srolovitz,et al.  First passage time Markov chain analysis of rare events for kinetic Monte Carlo: double kink nucleation during dislocation glide , 2002 .

[209]  Surya R. Kalidindi,et al.  A new framework for computationally efficient structure–structure evolution linkages to facilitate high-fidelity scale bridging in multi-scale materials models , 2011 .

[210]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[211]  S Kafandaris,et al.  The Economic Value of Information , 2001, J. Oper. Res. Soc..

[212]  Su Hao,et al.  A hierarchical multi-physics model for design of high toughness steels , 2003 .