Principles and applications of CVD powder technology

Chemical vapor deposition (CVD) is an important technique for surface modification of powders through either grafting or deposition of films and coatings. The efficiency of this complex process primarily depends on appropriate contact between the reactive gas phase and the solid particles to be treated. Based on this requirement, the first part of this review focuses on the ways to ensure such contact and particularly on the formation of fluidized beds. Combination of constraints due to both fluidization and chemical vapor deposition leads to the definition of different types of reactors as an alternative to classical fluidized beds, such as spouted beds, circulating beds operating in turbulent and fast-transport regimes or vibro-fluidized beds. They operate under thermal but also plasma activation of the reactive gas and their design mainly depends on the type of powders to be treated. Modeling of both reactors and operating conditions is a valuable tool for understanding and optimizing these complex processes and materials. In the second part of the review, the state of the art on materials produced by fluidized bed chemical vapor deposition is presented. Beyond pioneering applications in the nuclear power industry, application domains, such as heterogeneous catalysis, microelectronics, photovoltaics and protection against wear, oxidation and heat are potentially concerned by processes involving chemical vapor deposition on powders. Moreover, simple and reduced cost FBCVD processes where the material to coat is immersed in the FB, allow the production of coatings for metals with different wear, oxidation and corrosion resistance. Finally, large-scale production of advanced nanomaterials is a promising area for the future extension and development of this technique.

[1]  K. Tomishige,et al.  Characterization of bimetallic surface structures of highly active Rh-Sn/SiO2 catalysts for NO-H2 reaction by EXAFS , 1993 .

[2]  M. Hemati,et al.  Étude hydrodynamique des lits fluidisés sous vide et sous haute température , 1999 .

[3]  F. Pedraza,et al.  Kinetic studies of Cr and Al deposition using CVD-FBR on different metallic substrates , 1999 .

[4]  D. Tsipas,et al.  Boride coatings on non-ferrous materials in a fluidized bed reactor and their properties , 2002 .

[5]  D. Geldart,et al.  Gas fluidization technology , 1986 .

[6]  J. Chu,et al.  Improvement of environmental degradation resistance of Fe–Al-based alloys by surface modification treatments , 1997 .

[7]  K. B. Mathur,et al.  A technique for contacting gases with coarse solid particles , 1955 .

[8]  N. Hwang,et al.  Thermodynamic approach to the chemical vapor deposition process , 1994 .

[9]  K. Okuyama,et al.  Nanoparticle Synthesis by Ionizing Source Gas in Chemical Vapor Deposition , 2003 .

[10]  K. Minato,et al.  Chemical vapor deposition of silicon carbide for coated fuel particles , 1987 .

[11]  Toshinori Kojima,et al.  CHEMICAL VAPOR DEPOSITION AND HOMOGENEOUS NUCLEATION IN MONOSILANE PYROLYSIS WITHIN INTERPARTICLE SPACES -APPLICATION OF FINES FORMATION ANALYSIS TO FLUIDIZED BED CVD- , 1988 .

[12]  Hugh O. Pierson,et al.  Handbook of chemical vapor deposition (CVD) : principles, technology, and applications , 1992 .

[13]  Liang-Shih Fan,et al.  Gas-Liquid-Solid Fluidization Engineering , 1989 .

[14]  Shusaku Shiozawa,et al.  Safety criteria and quality control of HTTR fuel , 2001 .

[15]  J. Durand,et al.  Doped CHx microshells prepared by radio frequency plasma enhanced chemical vapor deposition for inertial confinement fusion experiments , 2001 .

[16]  A. Kiennemann,et al.  Rhodium-catalyzed hydrocarbonylation of acetic acid into higher acids , 1998 .

[17]  Javier Bilbao,et al.  Design and operation of a catalytic polymerization reactor in a dilute spouted bed regime , 1997 .

[18]  S. George,et al.  Vibro-fluidization of fine boron nitride powder at low pressure , 2001 .

[19]  D. Tsipas,et al.  Surface treatments in fluidized bed reactors , 2000 .

[20]  F. Maury,et al.  A Thermodynamic Approach to the CVD of Chromium and of Chromium Carbides Starting from Cr(C6H6)2 , 1998 .

[21]  A. Nikroo,et al.  Thick GDP Microshells for LIL and LMJ Targets , 2002 .

[22]  P. O’Brien,et al.  Developments in CVD Delivery Systems: A Chemist's Perspective on the Chemical and Physical Interactions Between Precursors , 2002 .

[23]  J. Couderc,et al.  Silicon deposition from silane or disilane in a fluidized bed—Part II: Theoretical analysis and modeling , 1995 .

[24]  K. B. Mathur,et al.  Developments in spouted bed technology , 1974 .

[25]  D. Tsipas,et al.  Deposition of hard and/or corrosion resistant, single and multielement coatings on ferrous and nonferrous alloys in a fluidized bed reactor , 2003 .

[26]  Chunzhong Li,et al.  Preparation of nanocrystalline SnO2 thin film coated Al2O3 ultrafine particles by fluidized chemical vapor deposition , 1997 .

[27]  T. Kodas,et al.  Coating of TiO2 particles by chemical vapor deposition of SiO2 , 1996 .

[28]  F. Pedraza,et al.  Adhesion properties of aluminide coatings deposited via CVD in fluidised bed reactors (CVD-FBR) on AISI 304 stainless steel , 2000 .

[29]  P. Serp,et al.  Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor , 2002 .

[30]  C. Chung,et al.  Encapsulating the electroluminescent phosphor micro-particles using a pulsed metal-organic chemical vapor deposition process in a fluidized bed , 2002 .

[31]  J. Ross Ullman's encyclopedia of industrial chemistry , 1986 .

[32]  T. Kojima,et al.  Production of Si3N4/Si3N4 and Si3N4/Al2O3 composites by CVD coating of fine particles with ultrafine powder , 1999 .

[33]  D. Sathiyamoorthy,et al.  Fluid bed technology in materials processing , 1998 .

[34]  J. Ruvalcaba,et al.  Extension du procédé de dépôt de silicium par CVD en lit fluidisé à des conditions opératoires peu conventionnelles: dépôts sur poudres poreuses et/ou sous pression réduite , 1999 .

[35]  J. Smolík,et al.  Synthesis of titania particles by vapour-phase decomposition of titanium tetraisopropoxide , 2000 .

[36]  P. Serp,et al.  One-step preparation of highly dispersed supported rhodium catalysts by low-temperature organometallic chemical vapor deposition , 1995 .

[37]  K. Kusakabe,et al.  Recent work on fluidized bed processing of fine particles as advanced materials , 1990 .

[38]  N. Epstein,et al.  Gas spouting characteristics of fine particles , 1987 .

[39]  D. Tsipas,et al.  A comparative study of boride coatings obtained by pack cementation method and by fluidized bed technology , 2003 .

[40]  K. Ikawa,et al.  Chemical vapor deposition of ZrC within a spouted bed by bromide process , 1981 .

[41]  D. Geldart Types of gas fluidization , 1973 .

[42]  P. Serp,et al.  Chemical vapor deposition methods for the controlled preparation of supported catalytic materials. , 2002, Chemical reviews.

[43]  Alan W. Weimer,et al.  Nanocoating Individual Silica Nanoparticles by Atomic Layer Deposition in a Fluidized Bed Reactor , 2005 .

[44]  O. Levenspiel,et al.  Bubbling Bed Model. Model for Flow of Gas through a Fluidized Bed , 1968 .

[45]  M. Muhler,et al.  The preparation of Pd/SiO2 catalysts by chemical vapor deposition in a fluidized-bed reactor , 2003 .

[46]  K. Shinohara,et al.  CVD coating of Si3N4 ultra-fine particles with AIN in CO-current moving bed reactor , 1997 .

[47]  K. Sabelfeld,et al.  Aggregate Formation Under Homogeneous Silane Thermal Decomposition , 2000 .

[48]  Pee-Yew Lee,et al.  Thermal reactive deposition coating of chromium carbide on die steel in a fluidized bed furnace , 1998 .

[49]  P. Serp,et al.  Carbon nanotubes produced by substrate free metalorganic chemical vapor deposition of iron catalysts and ethylene , 2001 .

[50]  J. Durand,et al.  Comparative study of a-C:H films for inertial confinement fusion prepared with various hydrocarbon precursors by radio frequency-plasma enhanced chemical vapor deposition , 2000 .

[51]  Milorad P. Dudukovic,et al.  Chemical vapor deposition and homogeneous nucleation in fluidized bed reactors: silicon from silane , 1986 .

[52]  B. Wood,et al.  Titanium-based coatings on copper by chemical vapor deposition in fluidized bed reactors , 1991 .

[53]  K. Tomishige,et al.  Observation of Molecular Reaction Intermediate and Reaction Mechanism for NO Dissociation and No-H2 Reaction on Rh-Sn/SiO2 Catalysts , 1995 .

[54]  T. Shingles,et al.  Two-phase theory and fine powders , 1983 .

[55]  K. Okuyama,et al.  Synthesis of Monodisperse Ultrapure Gallium Nitride Nanoparticles by MOCVD , 2004 .

[56]  Spouted beds of fine particles , 1974 .

[57]  K. P. Jong Synthesis of supported catalysts , 1999 .

[58]  P. Rohr,et al.  Plasma CVD of Ultrathin TiO2 Films on Powders in a Circulating Fluidized Bed , 2000 .

[59]  K. Tomishige,et al.  Design and Characterization by EXAFS, FTIR, and TEM of Rh-Sn/SiO2 Catalysts Active for NO-H2 Reaction , 1994 .

[60]  J. Smolík,et al.  Preparation of Al2O3–SiO2 fine particles by CVD method in tube flow reactor , 2005 .

[61]  F. Pedraza,et al.  Silicon deposition on AISI 304 stainless steel by CVD in fluidized bed reactors: analysis of silicide formation and adhesion of coatings , 2001 .

[62]  P. Serp,et al.  Carbon supported platinum catalysts for catalytic wet air oxidation of refractory carboxylic acids , 2005 .

[63]  Synthesis of nanoparticles using vapor-phase decomposition of copper(II) acetylacetonate , 2005 .

[64]  D. Peters,et al.  Silicon coatings on copper by chemical vapor deposition in fluidized bed reactors , 1991 .

[65]  S. Uchida,et al.  Effect of particle diameter on fluidization under vibration , 2002 .

[66]  A. Albu-Yaron,et al.  Inorganic fullerene-like nanoparticles of TiS2 , 2005 .

[67]  Qian Weizhong,et al.  Production of carbon nanotubes in a packed bed and a fluidized bed , 2003 .

[68]  G. Angelopoulos,et al.  Modelling of titanium carbide coating growth on carbon steels by conventional and fluidized bed CVD , 1999 .

[69]  K. Kato,et al.  Bubble assemblage model for fluidized bed catalytic reactors , 1969 .

[70]  John Houseman,et al.  Silicon particle growth in a fluidized‐bed reactor , 1987 .

[71]  George N. Angelopoulos,et al.  Formation and modelling of aluminide coatings on iron by a fluidised bed CVD process , 2002 .

[72]  C. Xu,et al.  Experimental and theoretical study on the agglomeration arising from fluidization of cohesive particles—effects of mechanical vibration , 2005 .

[73]  Hamid Arastoopour,et al.  Numerical simulation and experimental analysis of gas/solid flow systems: 1999 Fluor-Daniel Plenary lecture , 2001 .

[74]  K. Shinohara,et al.  Optimal Operation of Moving-Bed Reactor for CVD Coating of Fine Particles , 1999 .

[75]  A. Kishioka,et al.  Some properties of aluminium-nitride powder prepared by metal-organic chemical vapour deposition , 1995 .

[76]  Masatoshi Nagai,et al.  CVD Synthesis of Alumina-supported Molybdenum Carbide Catalyst , 1996 .

[77]  A. Züttel,et al.  Fluidised-bed CVD synthesis of carbon nanotubes on Fe2O3/MgO , 2003 .

[78]  A. Krause,et al.  Ethene hydroformylation on Co/SiO2 catalysts , 1998 .

[79]  G. Angelopoulos,et al.  Formation of aluminide coatings on nickel by a fluidised bed CVD process , 2001 .

[80]  Martin Rhodes,et al.  Flow structure in a fast fluid bed , 1998 .

[81]  F. Wei,et al.  The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor , 2002 .

[82]  S. Pratsinis,et al.  Effect of reaction temperature on CVD-made TiO2 primary particle diameter , 2003 .

[83]  S. K. Iya,et al.  Heterogeneous Decomposition of Silane in a Fixed Bed Reactor , 1982 .

[84]  M. Yan,et al.  Synthesis of nanometer-sized SiC powders through chemical vapour deposition II. Effect of C2H4/SiH4 mole ratio , 1998 .

[85]  Nader Jand,et al.  The influence of low pressure operation on fluidization quality , 2003 .

[86]  Hui‐Ming Cheng,et al.  The influence of preparation parameters on the mass production of vapor-grown carbon nanofibers , 2000 .

[87]  F. Pedraza,et al.  Growth of oxide scales upon isothermal oxidation of CVD-FBR aluminide coated stainless steel , 2002 .

[88]  Pratim Biswas,et al.  Simulation of aerosol dynamics and transport in chemically reacting particulate matter laden flows. Part II: Application to CVD reactors , 2004 .

[89]  K. Tomishige,et al.  Promoting effects of Sn on NO dissociation and NO reduction with H2 on Rh–Sn/SiO2 catalysts , 1993 .

[90]  F. Maury,et al.  Selection of metalorganic precursors for MOCVD of metallurgical coatings: application to Cr-based coatings , 1996 .

[91]  F. Pedraza,et al.  Silicon/silicon oxide coating on AISI 304 stainless steel by CVD in FBR: analysis of silicides and adherence of coating , 2002 .

[92]  Design of counter-current moving bed reactor for CVD coating of ultra-fine particles , 1997 .

[93]  P. Serp,et al.  Carbon nanotubes produced by fluidized bed catalytic CVD: first approach of the process , 2003 .

[94]  F. B. Carleton,et al.  Partial oxidation of fuel-rich mixtures in a spouted bed combustor , 1988 .

[95]  Mansoo Choi,et al.  Synthesis of non-agglomerated nanoparticles by an electrospray assisted chemical vapor deposition (ES-CVD) method , 2003 .

[96]  Sinn-wen Chen,et al.  Nickel and copper deposition on Al2O3 and SiC particulates by using the chemical vapour deposition–fluidized bed reactor technique , 1997 .

[97]  Electroconductivity of sintered bodies of α-Al2O3-TiN composite prepared by CVD reaction in a fluidized bed , 1993 .

[98]  P. Rohr,et al.  A circulating fluidised bed for plasma-enhanced chemical vapor deposition on powders at low temperatures , 1999 .

[99]  Muhammad E. Fayed,et al.  Handbook of Powder Science & Technology , 1997 .

[100]  Rohatgi Silicon production in a fluidized bed reactor: Final report , 1986 .

[101]  J. Figueiredo,et al.  Modification of the surface chemistry of activated carbons , 1999 .

[102]  Masato Tanaka,et al.  Synthesis of AlN/SiC composite powders by floating-type fluidized-bed CVD , 1991 .

[103]  A. Astarita,et al.  Surface Modification Technologies , 2019, Key Engineering Materials.

[104]  T. Kojima,et al.  Vertical progress of methane conversion in a D.C. plasma fluidized bed reactor , 1992 .

[105]  N. Hwang,et al.  Driving force for deposition in the chemical vapour deposition process , 1994 .

[106]  Enric Bertran,et al.  Production of boron nitride nanometric powder by plasma-enhanced chemical vapor deposition: microstructural characterization , 1996 .

[107]  J. Bilbao,et al.  Kinetic study of fast pyrolysis of sawdust in a conical spouted bed reactor in the range 400–500 °C , 2001 .

[108]  H. Gu,et al.  Preparation of nanosized Mo powder by microwave plasma chemical vapor deposition method , 1999 .

[109]  Frank Rohmund,et al.  A simple method for the production of large arrays of aligned carbon nanotubes , 2000 .

[110]  R. L. Pozzo,et al.  Design of fluidized bed photoreactors: Optical properties of photocatalytic composites of titania CVD-coated onto quartz sand , 2005 .

[111]  F. Rohmund,et al.  Carbon nanotube films obtained by thermal chemicalvapour deposition , 2001 .

[112]  Gerhard Ertl,et al.  Preparation of Solid Catalysts , 1999 .

[113]  A. Sanjurjo,et al.  Chemical vapor deposition coatings in fluidized bed reactors , 1989 .

[114]  Silicon deposition from silane or disilane in a fluidized bed—Part I: Experimental study , 1995 .

[115]  R. W. Reynoldson,et al.  Advances in surface treatments using fluidised beds , 1995 .

[116]  Walter R.A. Goossens Classification of fluidized particles by Archimedes number , 1998 .

[117]  P. Fauchais,et al.  Reactive thermal plasmas: ultrafine particle synthesis and coating deposition , 1997 .

[118]  J. Madejová,et al.  Silicon carbide powder synthesis by chemical vapour deposition from silane/acetylene reaction system , 2000 .

[119]  D. Tsipas,et al.  Boriding in a fluidized bed reactor , 2001 .

[120]  Francisco Pompeo,et al.  Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. , 2003, Journal of the American Chemical Society.

[121]  G. M. Kim,et al.  Multi-layer coating of silicon carbide and pyrolytic carbon on UO , 2000 .

[122]  M. Lafont,et al.  Transmission electron microscopy of Re and Ru films deposited on NiCoCrAlYTa powders , 2004 .

[123]  P. Serp,et al.  Highly dispersed activated carbon supported platinum catalysts prepared by OMCVD: a comparison with wet impregnated catalysts , 2003 .

[124]  A. Zecchina,et al.  Infrared characterization of group VIB metal carbonyls adsorbed on .gamma.-alumina , 1988 .

[125]  P. Serp,et al.  Single-step preparation of activated carbon supported platinum catalysts by fluidized bed organometallic chemical vapor deposition , 1999 .

[126]  A. Guerrero-Ruíz,et al.  Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor , 2003 .

[127]  K. Kusakabe,et al.  Tin(IV) Oxide Coating of Aluminum Borate Whiskers and Alumina Particles by Chemical Vapor Deposition , 1993 .

[128]  B. Caussat,et al.  Experimental study on fluidization of micronic powders , 2005 .

[129]  Chung-Hong Lin,et al.  Modeling particle growth and deposition in a tubular CVD reactor , 1999 .

[130]  Gary G. Tibbetts,et al.  Role of sulfur in the production of carbon fibers in the vapor phase , 1994 .

[131]  T. L. Brown,et al.  KINETICS OF SURFACE PROCESSES FOR MO(CO)6 ON PARTIALLY DEHYDROXYLATED ALUMINA AND HYDROXYLATED ALUMINA. OBSERVATION OF MO(CO)5(ADS) , 1995 .

[132]  J. Kidder,et al.  Hybrid gas-to-particle conversion and chemical vapor deposition for the production of porous alumina films , 2002 .

[133]  O. Tan,et al.  Structural and gas sensing properties of ultrafine Fe2O3 prepared by plasma enhanced chemical vapor deposition , 1997 .

[134]  F. Pedraza,et al.  On the aluminisation of stainless steel by CVD in fluidised beds , 2005 .

[135]  G. Angelopoulos,et al.  Feasibility of fluidized bed CVD for the formation of protective coatings , 1995 .

[136]  John Long,et al.  Cr(N,C) diffusion coating formation on pre-nitrocarburised H13 tool steel , 2004 .

[137]  D. Tsipas,et al.  Boriding of nickel in a fluidized bed reactor , 2002 .

[138]  F. Pedraza,et al.  Aluminizing and chromizing bed treatment by CVD in a fluidized bed reactor on austenitic stainless steels , 1999 .

[139]  A. Govindaraj,et al.  Carbon nanotubes by the metallocene route , 1997 .

[140]  Song-hao Liu,et al.  Influence of preparation parameters on the particle size of nanosized silicon , 1996 .

[141]  Gilles Flamant,et al.  Plasma-enhanced chemical vapor deposition of nitrides on fluidized particles , 2001 .

[142]  P. Serp,et al.  A versatile one-step method for the preparation of highly dispersed metal supported catalysts , 1995 .

[143]  Jean‐Cyrille Hierso,et al.  Platinum and Palladium Films Obtained by Low-Temperature MOCVD for the Formation of Small Particles on Divided Supports as Catalytic Materials , 2000 .

[144]  K. Tomishige,et al.  In-situ EXAFS Observation of the Molecular Reaction Intermediate for NO–H2 Reaction on Highly Active Rh–Sn/SiO2 Catalysts , 1994 .

[145]  Masao Sakamoto,et al.  Quasi-three-dimensional numerical simulation of spouted beds in cylinder , 2000 .

[146]  J. Werther D. Geldart (Ed.): Gas Fluidization Technology, John Wiley & Sons. Chichester, New York, Brisbane, Toronto, Singapore 1986. 468 Seiten, Preis: £ 42.50 , 1987 .

[147]  Hans Huschka,et al.  Status of qualification of high-temperature reactor fuel element spheres , 1985 .

[148]  D. Woodruff,et al.  The Homogeneous Nucleation of Condensed Silicon in the Gaseous Si‐H‐Cl System , 1984 .

[149]  John R. Grace,et al.  Verification and validation of CFD models and dynamic similarity for fluidized beds , 2004 .

[150]  M. Zachariah,et al.  Numerical modeling of silicon oxide particle formation and transport in a one-dimensional low-pressure chemical vapor deposition reactor , 2002 .

[151]  A. Nagarkatti,et al.  Pressure and flow characteristics of a gas phase spout-fluid bed and the minimum spout-fluid condition , 1974 .

[152]  F. Pedraza,et al.  Effect of fluidized bed CVD aluminide coatings on the cyclic oxidation of austenitic AISI 304 stainless steel , 2001 .

[153]  P. Serp,et al.  Novel carbon supported material: highly dispersed platinum particles on carbon nanospheres , 2001 .

[154]  B. Drevet,et al.  Wettability at high temperatures , 1999 .

[155]  G. Angelopoulos,et al.  Formation of TiC coatings on steels by a fluidized bed chemical vapour deposition process , 1994 .

[156]  Correlation between microstructure and photoluminescence of nanocrystalline silicon powder prepared by laser-induced CVD , 1996 .

[157]  O. Molerus,et al.  Interpretation of Geldart's type A, B, C and D powders by taking into account interparticle cohesion forces , 1982 .

[158]  J. Blocher Coating of glass by chemical vapor deposition , 1981 .

[159]  Chunhe Tang,et al.  Research and Development of Fuel Element for Chinese 10 MW High Temperature Gas-cooled Reactor , 2000 .

[160]  B. Wood,et al.  Aluminum and alumina coatings on copper by chemical vapor deposition in fluidized bed reactors , 1992 .

[161]  I. Kimura,et al.  Synthesis of fine AlN powder by a floating nitridation technique using an N2/NH3 gas mixture , 1989 .

[162]  Enric Bertran,et al.  Nanopowder of silicon nitride produced in radio frequency modulated glow discharges from SiH4 and NH3 , 1998 .

[163]  Javier Bilbao,et al.  Pyrolysis of sawdust in a conical spouted‐bed reactor with a HZSM‐5 catalyst , 2000 .