Frequency-Dependent, Cell Type-Divergent Signaling in the Hippocamposeptal Projection

Hippocampal oscillations are critical for information processing, and are strongly influenced by inputs from the medial septum. Hippocamposeptal neurons provide direct inhibitory feedback from the hippocampus onto septal cells, and are therefore likely to also play an important role in the circuit; these neurons fire at either low or high frequency, reflecting hippocampal network activity during theta oscillations or ripple events, respectively. Here, we optogenetically target the long-range GABAergic projection from the hippocampus to the medial septum in rats, and thereby simulate hippocampal input onto downstream septal cells in an acute slice preparation. In response to optogenetic activation of hippocamposeptal fibers at theta and ripple frequencies, we elicit postsynaptic GABAergic responses in a subset (24%) of septal cells, most predominantly in fast-spiking cells. In addition, in another subset of septal cells (19%) corresponding primarily to cholinergic cells, we observe a slow hyperpolarization of the resting membrane potential and a decrease in input resistance, particularly in response to prolonged high-frequency (ripple range) stimulation. This slow response is partially sensitive to GIRK channel and D2 dopamine receptor block. Our results suggest that two independent populations of septal cells distinctly encode hippocampal feedback, enabling the septum to monitor ongoing patterns of activity in the hippocampus.

[1]  Lief E. Fenno,et al.  Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins , 2011, Nature Methods.

[2]  A. Levey,et al.  D 1 and D 2 dopamine receptor mRNA in rat brain ( striatum / substantia nigra / amygdala / septum / in situ hybridization ) , 2022 .

[3]  P. Emson,et al.  Somatostatin Potently Stimulates In Vivo Striatal Dopamine and γ‐Aminobutyric Acid Release by a Glutamate‐Dependent Action , 1998, Journal of neurochemistry.

[4]  M. Danik,et al.  Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: novel implications for hippocampal rhythmicity , 2003, The Journal of physiology.

[5]  H. Akil,et al.  Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: An in situ hybridization study , 1994, The Journal of comparative neurology.

[6]  R. North,et al.  Somatostatin increases an inwardly rectifying potassium conductance in guinea‐pig submucous plexus neurones. , 1987, The Journal of physiology.

[7]  C. H. Vanderwolf,et al.  Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: Relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital , 1975, Experimental Neurology.

[8]  M. Quyen,et al.  Hub GABA Neurons Mediate Gamma-Frequency Oscillations at Ictal-like Event Onset in the Immature Hippocampus , 2012, Neuron.

[9]  Z. Henderson,et al.  Parvalbumin-immunoreactive, fast-spiking neurons in the medial septum/diagonal band complex of the rat: intracellular recordings in vitro , 1999, Neuroscience.

[10]  J. Gallagher,et al.  Somatostatin hyperpolarizes neurons and inhibits spontaneous activity in the rat dorsolateral septal nucleus , 1989, Brain Research.

[11]  T. Freund,et al.  Types and synaptic connections of hippocampal inhibitory neurons reciprocally connected with the medial septum , 2008, The European journal of neuroscience.

[12]  G Buzsáki,et al.  Interactions between Hippocampus and Medial Septum during Sharp Waves and Theta Oscillation in the Behaving Rat , 1999, The Journal of Neuroscience.

[13]  G. Siggins,et al.  Somatostatin increases a voltage-insensitive K+ conductance in rat CA1 hippocampal neurons. , 1998, Journal of neurophysiology.

[14]  Henry Markram,et al.  Electrophysiological characteristics of cholinergic and non-cholinergic neurons in the rat medial septum-diagonal band complex , 1990, Brain Research.

[15]  M. Brownfield,et al.  Comparative distribution of neuropeptide Y Y1 and Y5 receptors in the rat brain by using immunohistochemistry , 2003, The Journal of comparative neurology.

[16]  T. Freund,et al.  GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus , 1988, Nature.

[17]  Jack R. Mellor,et al.  Cholinergic modulation of hippocampal network function , 2013, Front. Synaptic Neurosci..

[18]  S. Lummis,et al.  Radioligand Binding and Photoaffinity Labelling Studies Show a Direct Interaction of Phenothiazines at 5-HT3 Receptors , 1997, Neuropharmacology.

[19]  H. Fibiger,et al.  Dopaminergic Regulation of Septohippocampal Cholinergic Neurons , 1994, Journal of neurochemistry.

[20]  A. Simon,et al.  Medial Septal GABAergic Neurons Express the Somatostatin sst2A Receptor: Functional Consequences on Unit Firing and Hippocampal Theta , 2005, The Journal of Neuroscience.

[21]  M. Danik,et al.  The Hippocamposeptal Pathway Generates Rhythmic Firing of GABAergic Neurons in the Medial Septum and Diagonal Bands: An Investigation Using a Complete Septohippocampal Preparation In Vitro , 2008, The Journal of Neuroscience.

[22]  H. Zhang,et al.  A distinctive subpopulation of medial septal slow-firing neurons promote hippocampal activation and theta oscillations. , 2011, Journal of neurophysiology.

[23]  C. Spyraki,et al.  Activation of somatostatin receptors in the globus pallidus increases rat locomotor activity and dopamine release in the striatum , 2008, Psychopharmacology.

[24]  R. Salín-Pascual,et al.  Effects of hypocretin–saporin injections into the medial septum on sleep and hippocampal theta , 2001, Brain Research.

[25]  I. Gartside,et al.  Relationship Between Venous Pressure and tissue Volume During Venous Congestion Plethysmography in Man , 1997, The Journal of physiology.

[26]  A. Mason,et al.  Effects of somatostatin and related peptides on the membrane potential and input resistance of rat ventral subicular neurons, in vitro. , 1996, The Journal of pharmacology and experimental therapeutics.

[27]  Z. Borhegyi,et al.  Postsynaptic targets of GABAergic hippocampal neurons in the medial septum-diagonal band of broca complex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  S. M. Sims,et al.  Somatostatin activates an inwardly rectifying K+ conductance in freshly dispersed rat somatotrophs. , 1991, The Journal of physiology.

[29]  T. Kosaka,et al.  Immunocytochemical characterization of hippocamposeptal projecting GABAergic nonprincipal neurons in the mouse brain: a retrograde labeling study , 2002, Brain Research.

[30]  S. Hersch,et al.  Light and electron microscopic study of m2 muscarinic acetylcholine receptor in the basal forebrain of the rat , 1995, The Journal of comparative neurology.

[31]  S. Peroutka,et al.  ANTIEMETICS: NEUROTRANSMITTER RECEPTOR BINDING PREDICTS THERAPEUTIC ACTIONS , 1982, The Lancet.

[32]  G. Buzsáki,et al.  Selective suppression of hippocampal ripples impairs spatial memory , 2009, Nature Neuroscience.

[33]  M. Chesselet,et al.  Somatostatin regulates dopamine release in rat striatal slices and cat caudate nuclei , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  S. Rivkees,et al.  Immunohistochemical detection of A1 adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia , 1995, Brain Research.

[35]  M. Lazdunski,et al.  Molecular Properties of Neuronal G-protein-activated Inwardly Rectifying K+ Channels (*) , 1995, The Journal of Biological Chemistry.

[36]  Ilana B. Witten,et al.  Recombinase-Driver Rat Lines: Tools, Techniques, and Optogenetic Application to Dopamine-Mediated Reinforcement , 2011, Neuron.

[37]  D. Hoyer,et al.  Embryonic and postnatal mRNA distribution of five somatostatin receptor subtypes in the rat brain , 1995, Neuropharmacology.

[38]  M. Danik,et al.  A functional glutamatergic neurone network in the medial septum and diagonal band area , 2005, The Journal of physiology.

[39]  C. Chapman,et al.  Cholinergic Induction of Theta-Frequency Oscillations in Hippocampal Inhibitory Interneurons and Pacing of Pyramidal Cell Firing , 1999, The Journal of Neuroscience.

[40]  G. Buzsáki,et al.  Hippocampal theta activity following selective lesion of the septal cholinergic systeM , 1994, Neuroscience.

[41]  Carey Y. L. Huh,et al.  Glutamatergic Neurons of the Mouse Medial Septum and Diagonal Band of Broca Synaptically Drive Hippocampal Pyramidal Cells: Relevance for Hippocampal Theta Rhythm , 2010, The Journal of Neuroscience.

[42]  P. Somogyi,et al.  Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus , 2007, The Journal of Neuroscience.

[43]  T. Freund,et al.  Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum. , 1997, The Journal of physiology.

[44]  A. Levey,et al.  D1 and D2 dopamine receptor mRNA in rat brain. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Funder,et al.  Interaction of dopamine receptor ligands with subtypes of the opiate receptor. , 1984, European journal of pharmacology.

[46]  E. Callaway,et al.  Silencing preBötzinger Complex somatostatin-expressing neurons induces persistent apnea in awake rat , 2008, Nature Neuroscience.

[47]  R. Matthews,et al.  Electrophysiological characteristics of non-bursting, glutamate decarboxylase messenger RNA-positive neurons of the medial septum/diagonal band nuclei of guinea-pig and rat , 2000, Neuroscience.

[48]  P. Luiten,et al.  Cholinergic and GABAergic neurons in the rat medial septum express muscarinic acetylcholine receptors , 1994, Brain Research.

[49]  M. Whittington,et al.  Long-Range–Projecting GABAergic Neurons Modulate Inhibition in Hippocampus and Entorhinal Cortex , 2012, Science.

[50]  N. Gorelova,et al.  Role of the afterhyperpolarization in control of discharge properties of septal cholinergic neurons in vitro. , 1996, Journal of neurophysiology.

[51]  Jesse Jackson,et al.  Self-generated theta oscillations in the hippocampus , 2009, Nature Neuroscience.

[52]  S. Peroutka,et al.  Differential interactions of traditional and novel antiemetics with dopamine D2 and 5-hydroxytryptamine3 receptors , 2004, Cancer Chemotherapy and Pharmacology.

[53]  C. Spyraki,et al.  Chronic desipramine treatment selectively potentiates somatostatin‐induced dopamine release in the nucleus accumbens , 2001, The European journal of neuroscience.

[54]  Z. Henderson,et al.  GABAB receptors in the medial septum/diagonal band slice from 16–25 day rat , 2005, Neuroscience.

[55]  U. Kumar,et al.  Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. , 2000, Science.

[56]  M. Starr GABA potentiates potassium-stimulated 3H-dopamine release from slices of rat substantia nigra and corpus striatum. , 1978, European journal of pharmacology.

[57]  D. Hoyer,et al.  Distribution and characterisation of somatostatin receptor mRNA and binding sites in the brain and periphery , 2000, Journal of Physiology-Paris.

[58]  A. Baragli,et al.  Heterooligomerization of human dopamine receptor 2 and somatostatin receptor 2 Co-immunoprecipitation and fluorescence resonance energy transfer analysis. , 2007, Cellular signalling.

[59]  I. Katona,et al.  Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum , 2003, The European journal of neuroscience.