A fracture mechanics study of subcritical tensile cracking of quartz in wet environments

Load relaxation and cross-head displacement rate-change experiments have been used to establish log10 stress intensity factor (K) versus log10 crack velocity (v) diagrams for double torsion specimens, of synthetic quartz cracked on thea plane in liquid water and moist air.For crack propagation normal toz and normal tor at 20°C,KIc (the critical stress intensity factor) was found to be 0.852±0.045 MN·m−3/2 and 1.002±0.048 MN·m−3/2, respectively.Subcritical crack growth at velocities from 10−3 m·s−1 to 10−9 m·s−1 at temperatures from 20°C to 80°C is believed to be facilitated by chemical reaction between the siloxane bonds of the quartz and the water or water vapour of the environment (stress corrosion). The slopes, of isotherms in theK-v diagrams are dependent upon crystallographic orientation. The isotherms have a slope of 12±0.6 for cracking normal tor and 19.9±1.7 for cracking normal toz. The activation enthalpy for crack propagation in the former orientation in liquid water at temperatures from 20°C to 80°C is 52.5±3.8 kJ·mole−1.A discussion is presented of the characteristics of theK-v diagrams for quartz.

[1]  R. Martin,et al.  Time-dependent crack growth in quartz and its application to the creep of rocks , 1972 .

[2]  R. Haul,et al.  Kurzvorträge zum Hauptthema. Untersuchung der Sauerstoffbeweglichkeit in Titandioxyd, Quarz und Quarzglas mit Hilfe des heterogenen Isotopenaustausches , 1962 .

[3]  G. H. Frischat Sodium Diffusion in Natural Quartz Crystals , 1970 .

[4]  B. Atkinson,et al.  Fracture toughness of Tennessee Sandstone and Carrara Marble using the double torsion testing method , 1979 .

[5]  B. Lawn,et al.  A comparative study of the fracture of various silica modifications using the Hertzian test , 1973 .

[6]  Anthony G. Evans,et al.  A method for evaluating the time-dependent failure characteristics of brittle materials — and its application to polycrystalline alumina , 1972 .

[7]  W. Brown,et al.  Plane strain crack toughness testing of high strength metallic materials. , 1966 .

[8]  L. Russell,et al.  Slow crack growth in ceramic materials at elevated temperatures , 1975 .

[9]  Failure Prediction in Structural Ceramics Using Acoustic Emission , 1973 .

[10]  Sheldon M. Wiederhorn,et al.  Subcritical Crack Growth in Ceramics , 1974 .

[11]  S. Wiederhorn,et al.  Stress Corrosion and Static Fatigue of Glass , 1970 .

[12]  Dependence of Ultimate Strength of Glass Under Constant Load on Temperature, Ambient Atmosphere, and Time , 1953 .

[13]  R. D. Southwick,et al.  Strength and Static Fatigue of Abraded Glass Under Controlled Ambient Conditions: II, Effect of Various Abrasions and the Universal Fatigue Curve , 1959 .

[14]  Brian R. Lawn,et al.  An atomistic model of kinetic crack growth in brittle solids , 1975 .

[15]  C. H. Scholz,et al.  Mechanism of creep in brittle rock , 1968 .

[16]  A. Evans,et al.  The fracture stress and its dependence on slow crack growth , 1975 .

[17]  A. Kats Hydrogen in alpha-quartz , 1961 .

[18]  Bk Atkinson,et al.  Stress corrosion and the rate-dependent tensile failure of a fine-grained quartz rock , 1980 .

[19]  P. C. Grew,et al.  Stress corrosion theory of crack propagation with applications to geophysics , 1977 .

[20]  C. Scholz Static fatigue of quartz , 1972 .

[21]  R. J. Charles,et al.  Dynamic Fatigue of Glass , 1958 .

[22]  John R. Rice,et al.  Fracture of Brittle Solids (Cambridge Solid State Science Series) , 1975 .

[23]  T. R. Wilshaw,et al.  Deformation and fracture of synthetic α-quartz , 1973 .

[24]  S. Wiederhorn,et al.  Mechanisms of Subcritical Crack Growth in Glass , 1978 .

[25]  A. Evans,et al.  A simple method for studying slow crack growth. , 1973 .

[26]  D. Kupfer,et al.  Brain Catecholamines and Human Sleep , 1971, Nature.

[27]  W. Durham,et al.  Mechanisms of crack growth in quartz , 1975 .