Modeling the self‐sustained discharge‐excited XeCl laser in two dimensions

A new two‐dimensional model for transverse discharge‐excited gas lasers is described. The model can compute accurate electric fields for complex geometries. This facility is exploited to investigate the effect of the discharge electrode profile on XeCl laser performance. It is found that any of the stock electrode designs is satisfactory for high‐efficiency lasers with excitation pulses lasting for up to 200 ns. For longer‐pulse lasers, the pulse length and energy output are sensitive to the choice of electrode and there are grounds for preferring the Stappaerts profile over the other available designs.

[1]  G. J. Ernst,et al.  High-efficiency operation of a gas discharge XeCl laser using a magnetically induced resonant voltage overshoot circuit , 1990 .

[2]  T. H. Johnson,et al.  A comprehensive kinetic model of the electron-beam-excited xenon chloride laser , 1989 .

[3]  M. Kushner,et al.  Multidimensional modeling of transverse avalanche laser discharges: Applications to the HgBr laser , 1985 .

[4]  P. W. Smith,et al.  Modeling of the self-sustained, discharge-excited xenon-chloride laser , 1991 .

[5]  Rod S. Taylor,et al.  Ultralong optical‐pulse corona preionized XeCl laser , 1989 .

[6]  Joe F. Thompson,et al.  Boundary-fitted coordinate systems for numerical solution of partial differential equations—A review , 1982 .

[7]  Eddy A. Stappaerts,et al.  A novel analytical design method for discharge laser electrode profiles , 1982 .

[8]  M. Osborne,et al.  Long pulse operation and premature termination of a high-power discharge-pumped XeCl laser , 1986 .

[9]  C. Brau Rare gas halogen excimers , 1979 .

[10]  William H. Long,et al.  Efficient discharge pumping of an XeCl laser using a high‐voltage prepulse , 1983 .

[11]  M. Osborne,et al.  Output pulse termination of a self-sustained excimer laser , 1986 .

[12]  R. Taylor,et al.  Preionization and discharge stability study of long optical pulse duration UV-preionized XeCl lasers , 1986 .

[13]  K. Midorikawa,et al.  Theoretical analysis of a self-sustained discharge pumped XeCl laser , 1984 .

[14]  M. Kushner,et al.  High efficiency XeCl laser with spiker and magnetic isolation , 1986 .

[15]  C. E. Webb,et al.  Stability of transverse self‐sustained discharge‐excited long‐pulse XeCl lasers , 1986 .

[16]  Mark J. Kushner,et al.  Microarcs as a Termination Mechanism of Optical Pulses in Electric-Discharge-Excited , 1991 .

[17]  R. Sorkina Theoretical simulation of spatial-time characteristics of a discharge XeCl excimer laser active medium , 1990 .

[18]  M. Kushner,et al.  Discharge constriction, photodetachment, and ionization instabilities in electron‐beam‐sustained discharge excimer lasers , 1986 .

[19]  T. Chang,et al.  Improved Uniform‐Field Electrode Profiles for TEA Laser and High‐Voltage Applications , 1973 .