Multisymplectic Preissman scheme for the time-domain Maxwell's equations

From the Bridges’ multisymplectic form of Maxwell’s equations, we derive a multisymplectic Preissman scheme which couples two time levels for 2+1 dimensional Maxwell’s equations. The scheme is proven to preserve the discrete local energy exactly. Numerical results are reported to illustrate that the scheme is effective and it can get more precise numerical solutions than Yee’s scheme. Our numerical results can also indicate that the scheme keeps the discrete local energy and the global energy very well.

[1]  P. Morrison,et al.  The Maxwell-Vlasov equations as a continuous hamiltonian system , 1980 .

[2]  S. Reich,et al.  Numerical methods for Hamiltonian PDEs , 2006 .

[3]  J. Marsden Multisymplectic Geometry Method for Maxwell ’ s Equations and Multisymplectic Scheme , 2008 .

[4]  Bin Wang,et al.  Numerical implementation of the multisymplectic Preissman scheme and its equivalent schemes , 2004, Appl. Math. Comput..

[5]  Jerrold E. Marsden,et al.  The Hamiltonian structure of the Maxwell-Vlasov equations , 1982 .

[6]  Tingting Liu,et al.  Multisymplectic geometry and multisymplectic Preissman scheme for the KP equation , 2002 .

[7]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[8]  Ying Liu,et al.  Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients , 2006 .

[9]  Su,et al.  Numerical solution of the time-dependent Maxwell's equations for random dielectric media , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[11]  Rudolf Scherer,et al.  A multisymplectic geometry and a multisymplectic scheme for Maxwell's equations , 2006 .

[12]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[13]  Brian E. Moore,et al.  Backward error analysis for multi-symplectic integration methods , 2003, Numerische Mathematik.

[14]  S. Reich Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .

[15]  J. Marsden,et al.  Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.

[16]  U. Ascher,et al.  Multisymplectic box schemes and the Korteweg{de Vries equation , 2004 .

[17]  Vijaya Shankar,et al.  A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods , 1989 .

[18]  R. Danchin Global Existence in Critical Spaces¶for Flows of Compressible¶Viscous and Heat-Conductive Gases , 2001 .

[19]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[20]  Kang Feng,et al.  The symplectic methods for the computation of hamiltonian equations , 1987 .

[21]  Alvaro L. Islas,et al.  Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs , 2005, Math. Comput. Simul..

[22]  Zhixiang Huang,et al.  Symplectic partitioned Runge-Kutta scheme for Maxwell's equations , 2006 .

[23]  Allen Taflove,et al.  Application of the Finite-Difference Time-Domain Method to Sinusoidal Steady-State Electromagnetic-Penetration Problems , 1980, IEEE Transactions on Electromagnetic Compatibility.

[24]  Jing-Bo Chen Multisymplectic Geometry, Local Conservation Laws and a Multisymplectic Integrator for the Zakharov–Kuznetsov Equation , 2003 .

[25]  Multisymplectic Geometry Method for Maxwell's Equations and Multisymplectic Scheme ∗ , 2003, math-ph/0302058.