Dual functional MgHPO4 surface modifier used to repair deteriorated Ni-Rich LiNi0.8Co0.15Al0.05O2 cathode material

[1]  Feng Li,et al.  Micron-sized monocrystalline LiNi1/3Co1/3Mn1/3O2 as high-volumetric-energy-density cathode for lithium-ion batteries , 2018 .

[2]  T. Zhai,et al.  Multishell Precursors Facilitated Synthesis of Concentration-Gradient Nickel-Rich Cathodes for Long-Life and High-Rate Lithium-Ion Batteries. , 2018, ACS applied materials & interfaces.

[3]  A. Dolocan,et al.  Modified High-Nickel Cathodes with Stable Surface Chemistry Against Ambient Air for Lithium-Ion Batteries. , 2018, Angewandte Chemie.

[4]  Wangda Li,et al.  Mn versus Al in Layered Oxide Cathodes in Lithium‐Ion Batteries: A Comprehensive Evaluation on Long‐Term Cyclability , 2018 .

[5]  Chong Seung Yoon,et al.  Capacity Fading of Ni-Rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk or Surface Degradation? , 2018 .

[6]  Minjoon Park,et al.  Prospect and Reality of Ni‐Rich Cathode for Commercialization , 2018 .

[7]  Jaephil Cho,et al.  Controllable Solid Electrolyte Interphase in Nickel‐Rich Cathodes by an Electrochemical Rearrangement for Stable Lithium‐Ion Batteries , 2018, Advanced materials.

[8]  Wengao Zhao,et al.  Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 , 2018 .

[9]  Lei Wang,et al.  The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi 0.8 Co 0.15 Al 0.05 O 2 cathode material , 2018 .

[10]  H. Wu,et al.  Restoration of Degraded Nickel‐Rich Cathode Materials for Long‐Life Lithium‐Ion Batteries , 2018 .

[11]  H. Gasteiger,et al.  Effect of Ambient Storage on the Degradation of Ni-Rich Positive Electrode Materials (NMC811) for Li-Ion Batteries , 2018 .

[12]  Jun-Ho Park,et al.  Metal phosphate-coated Ni-rich layered oxide positive electrode materials for Li-ion batteries: improved electrochemical performance and decreased Li residuals content , 2017 .

[13]  Jinzhao Huang,et al.  Surface/Interfacial Structure and Chemistry of High-Energy Nickel-Rich Layered Oxide Cathodes: Advances and Perspectives. , 2017, Small.

[14]  K. Roh,et al.  Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted sol-gel method: Improved thermal stability and high-voltage performance , 2017 .

[15]  Hao Liu,et al.  Reaction Heterogeneity in LiNi0.8Co0.15Al0.05O2 Induced by Surface Layer , 2017 .

[16]  Xiaolong Deng,et al.  Stabilizing the Electrode/Electrolyte Interface of LiNi0.8Co0.15Al0.05O2 through Tailoring Aluminum Distribution in Microspheres as Long-Life, High-Rate, and Safe Cathode for Lithium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[17]  Kwangjin Park,et al.  Improved electrochemical properties of LiNi0.91Co0.06Mn0.03O2 cathode material via Li-reactive coating with metal phosphates , 2017, Scientific Reports.

[18]  Xijin Xu,et al.  Core–shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries , 2017 .

[19]  K. Du,et al.  Enhanced compacting density and cycling performance of Ni-riched electrode via building mono dispersed micron scaled morphology , 2017 .

[20]  Qingsong Wang,et al.  Improving the electrochemical performance of Ni-rich cathode material LiNi 0.815 Co 0.15 Al 0.035 O 2 by removing the lithium residues and forming Li 3 PO 4 coating layer , 2017 .

[21]  Peter Lamp,et al.  Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives , 2017 .

[22]  Doron Aurbach,et al.  Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes I. Nickel-Rich, LiNixCoyMnzO2 , 2017 .

[23]  Kwangjin Park,et al.  Enhancement in the electrochemical performance of zirconium/phosphate bi-functional coatings on LiNi0.8Co0.15Mn0.05O2 by the removal of Li residuals. , 2016, Physical chemistry chemical physics : PCCP.

[24]  Yongping Zheng,et al.  Conflicting Roles of Anion Doping on the Electrochemical Performance of Li-Ion Battery Cathode Materials , 2016 .

[25]  Wangda Li,et al.  Overcoming the chemical instability on exposure to air of Ni-rich layered oxide cathodes by coating with spinel LiMn1.9Al0.1O4 , 2016 .

[26]  X. Sun,et al.  Stability of Li2CO3 in cathode of lithium ion battery and its influence on electrochemical performance , 2016 .

[27]  Zhixing Wang,et al.  Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery , 2016 .

[28]  K. Du,et al.  The Role of Sodium in LiNi0.8Co0.15Al0.05O2 Cathode Material and Its Electrochemical Behaviors , 2016 .

[29]  Xiaoxiong Xu,et al.  Structure Integrity Endowed by a Ti-Containing Surface Layer towards Ultrastable LiNi0.8Co0.15Al0.05O2 for All-Solid-State Lithium Batteries , 2016 .

[30]  Min-Joon Lee,et al.  The role of nanoscale-range vanadium treatment in LiNi0.8Co0.15Al0.05O2 cathode materials for Li-ion batteries at elevated temperatures , 2015 .

[31]  Min-Joon Lee,et al.  Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. , 2015, Angewandte Chemie.

[32]  Y. Jung,et al.  Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries , 2015 .

[33]  Erik J. Berg,et al.  Activation Mechanism of LiNi0.80Co0.15Al0.05O2: Surface and Bulk Operando Electrochemical, Differential Electrochemical Mass Spectrometry, and X-ray Diffraction Analyses , 2015 .

[34]  Yangang Sun,et al.  An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer , 2015, Nano Research.

[35]  Bin Huang,et al.  Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries , 2014 .

[36]  Masahiro Kinoshita,et al.  Capacity fade of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1−x−yCoxO2 cathode after cycle tests in restricted depth of discharge ranges) , 2014 .

[37]  Xunhui Xiong,et al.  Enhanced electrochemical properties of a LiNiO2-based cathode material by removing lithium residues with (NH4)2HPO4 , 2014 .

[38]  Kyung Yoon Chung,et al.  Investigation of Changes in the Surface Structure of LixNi0.8Co0.15Al0.05O2 Cathode Materials Induced by the Initial Charge , 2014 .

[39]  Yang‐Kook Sun,et al.  Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni0.7Mn0.3]O2 , 2014 .

[40]  Yongseon Kim Mechanism of gas evolution from the cathode of lithium-ion batteries at the initial stage of high-temperature storage , 2013, Journal of Materials Science.

[41]  Chong Seung Yoon,et al.  Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating , 2013 .

[42]  Chong Seung Yoon,et al.  Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries , 2013 .

[43]  Jaephil Cho,et al.  A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer. , 2013, Nano letters.

[44]  Huajun Guo,et al.  Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries , 2013 .

[45]  Jianming Zheng,et al.  Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. , 2012, ACS nano.

[46]  Xunhui Xiong,et al.  Enhanced electrochemical properties of lithium-reactive V2O5 coated on the LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries at 60 °C , 2013 .

[47]  Yuji Kojima,et al.  Effect of Mg-doping on the degradation of LiNiO2-based cathode materials by combined spectroscopic methods , 2012 .

[48]  Yang‐Kook Sun,et al.  Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55 °C , 2011 .

[49]  M. Misra,et al.  Carbon Coated LiMnPO4 Nanorods for Lithium Batteries , 2011 .

[50]  Jaephil Cho,et al.  M3 ( PO4 ) 2-Nanoparticle-Coated LiCoO2 vs LiCo0.96M0.04O2 ( M = Mg and Zn ) on Electrochemical and Storage Characteristics , 2008 .

[51]  Yong Yang,et al.  Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2 , 2007 .

[52]  Jaephil Cho,et al.  Lithium-Reactive Co3 ( PO4 ) 2 Nanoparticle Coating on High-Capacity LiNi0.8Co0.16Al0.04O2 Cathode Material for Lithium Rechargeable Batteries , 2007 .

[53]  Jiujun Zhang,et al.  Investigation and improvement on the storage property of LiNi0.8Co0.2O2 as a cathode material for lithium-ion batteries , 2006 .

[54]  Min Gyu Kim,et al.  Washing Effect of a LiNi0.83Co0.15Al0.02O2 Cathode in Water , 2006 .

[55]  Guoying Chen,et al.  Li2CO3 in LiNi0.8Co0.15Al0.05O2 cathodes and its effects on capacity and power , 2004 .

[56]  G. Zhuang,et al.  A study of surface film formation on LiNi0.8Co0.15Al0.05O2 cathodes u sing attenuated total reflection infrared spectroscopy , 2004 .

[57]  G. Zhuang,et al.  Surface Film Formation on LiNi[sub 0.8]Co[sub 0.15]Al[sub 0.05]O[sub 2] Cathodes Using Attenuated Total Reflection IR Spectroscopy , 2004 .

[58]  P. Biensan,et al.  Synthesis and Characterization of New LiNi1 − y Mg y O 2 Positive Electrode Materials for Lithium‐Ion Batteries , 2000 .

[59]  Aline Rougier,et al.  An Overview of the Li(Ni,M)O2 Systems: Syntheses, Structures and Properties , 1999 .