High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations
暂无分享,去创建一个
[1] P. Lax,et al. Systems of conservation laws , 1960 .
[2] H. Huynh,et al. Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping , 1997 .
[3] Philip L. Roe,et al. A Well-Behaved TVD Limiter for High-Resolution Calculations of Unsteady Flow , 1997 .
[4] Eric Garnier,et al. Evaluation of some high‐order shock capturing schemes for direct numerical simulation of unsteady two‐dimensional free flows , 2000 .
[5] Chi-Wang Shu,et al. The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .
[6] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .
[7] Chi-Wang Shu. TVB uniformly high-order schemes for conservation laws , 1987 .
[8] Björn Sjögreen,et al. Grid convergence of high order methods for multiscale complex unsteady viscous compressible flows , 2001 .
[9] Gordon Erlebacher,et al. High-order ENO schemes applied to two- and three-dimensional compressible flow , 1992 .
[10] Nikolaus A. Adams,et al. Large-Eddy Simulation of Shock-Turbulence Interaction , 2004 .
[11] Christian Tenaud,et al. Evaluation of TVD high resolution schemes for unsteady viscous shocked flows , 2000 .
[12] Eleuterio F. Toro,et al. ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..
[13] C. Bernardi,et al. Approximations spectrales de problèmes aux limites elliptiques , 2003 .
[14] R. Peyret. Spectral Methods for Incompressible Viscous Flow , 2002 .
[15] K. Khalfallah,et al. Correction d'entropie pour des schémas numériques approchant un système hyperbolique , 1989 .
[16] Jay Casper,et al. Finite-volume implementation of high-order essentially nonoscillatory schemes in two dimensions , 1992 .
[17] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[18] Chi-Wang Shu,et al. Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .
[19] Freda Porter-Locklear. Large eddy simulations of compressible turbulent flows , 1995 .
[20] Krishnan Mahesh,et al. High order finite difference schemes with good spectral resolution , 1997 .
[21] D. Andrews,et al. A relaxation method for solving nonlinear stress equilibrium problems , 1973 .
[22] F. Nicoud,et al. Large-Eddy Simulation of the Shock/Turbulence Interaction , 1999 .
[23] D. Knight,et al. Advances in CFD prediction of shock wave turbulent boundary layer interactions , 2003 .
[24] P. Woodward,et al. The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .
[25] S. Lele. Compact finite difference schemes with spectral-like resolution , 1992 .
[26] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[27] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[28] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[29] Sangsan Lee,et al. Large eddy simulation of shock turbulence interaction , 1993 .
[30] B. P. Leonard,et al. The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection , 1991 .
[31] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[32] Marcel Lesieur,et al. Large-eddy simulations of compressible turbulent flows , 1998 .