A New Local Search Strategy for SAT

Recently, a new search strategy called configuration checking (CC) was proposed, for handling the cycling problem of local search. The CC strategy was used to improve the EWLS algorithm, a state-of-the-art local search for Minimum Vertex Cover (MVC). In this paper, we use this strategy to develop a local search algorithm for SAT called CWcc and a local search algorithm for weighted MAX-2-SAT called ANGScc. The CC strategy takes into account the circumstances of the variables when selecting a variable to flip. Experimental results show that the configuration checking strategy is more efficient than previous strategies for handling the cycling problem. We further improve CWcc; the resulting algorithm SWcc outperforms a state-of-the-art local search SAT solver TNM. ANGScc is also competitive with a state-of-the-art weighted MAX-2-SAT local search algorithm. Finally, we conduct some further analysis and experiments to compare the CC strategy with two other methods for handling the cycling problem: the tabu mechanism and the promising decreasing variable exploitation strategy.

[1]  Chu Min Li,et al.  Diversification and Determinism in Local Search for Satisfiability , 2005, SAT.

[2]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[3]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[4]  Paul Morris,et al.  The Breakout Method for Escaping from Local Minima , 1993, AAAI.

[5]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[6]  John Thornton,et al.  Additive versus Multiplicative Clause Weighting for SAT , 2004, AAAI.

[7]  Kaile Su,et al.  EWLS: A New Local Search for Minimum Vertex Cover , 2010, AAAI.

[8]  David Bañeres,et al.  The Impact of Max-SAT Resolution-Based Preprocessors on Local Search Solvers , 2010, J. Satisf. Boolean Model. Comput..

[9]  Roberto Battiti,et al.  Reactive Local Search for the Maximum Clique Problem1 , 2001, Algorithmica.

[10]  Wei Li,et al.  Many hard examples in exact phase transitions , 2003, Theor. Comput. Sci..

[11]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[12]  Holger H. Hoos,et al.  Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT , 2002, CP.

[13]  Lakhdar Sais,et al.  Tabu Search for SAT , 1997, AAAI/IAAI.

[14]  Ke Xu,et al.  A Simple Model to Generate Hard Satisfiable Instances , 2005, IJCAI.

[15]  Holger H. Hoos,et al.  An adaptive noise mechanism for walkSAT , 2002, AAAI/IAAI.

[16]  Zhe Wu,et al.  An Efficient Global-Search Strategy in Discrete Lagrangian Methods for Solving Hard Satisfiability Problems , 2000, AAAI/IAAI.

[17]  Ke Xu,et al.  Random constraint satisfaction: Easy generation of hard (satisfiable) instances , 2007, Artif. Intell..

[18]  Wei Li,et al.  Exact Phase Transitions in Random Constraint Satisfaction Problems , 2000, J. Artif. Intell. Res..

[19]  Luca Di Gaspero,et al.  A composite-neighborhood tabu search approach to the traveling tournament problem , 2007, J. Heuristics.

[20]  Abdul Sattar,et al.  Local search with edge weighting and configuration checking heuristics for minimum vertex cover , 2011, Artif. Intell..

[21]  Thomas Stützle,et al.  Iterated Robust Tabu Search for MAX-SAT , 2003, Canadian Conference on AI.

[22]  Bart Selman,et al.  Incomplete Algorithms , 2021, Handbook of Satisfiability.

[23]  Dale Schuurmans,et al.  Local search characteristics of incomplete SAT procedures , 2000, Artif. Intell..