Stationary Pattern of a Reaction–Diffusion Mussel–Algae Model

[1]  Junjie Wei,et al.  Spatiotemporal Patterns in a Delayed Reaction-Diffusion Mussel-Algae Model , 2019, Int. J. Bifurc. Chaos.

[2]  Junjie Wei,et al.  Bifurcation Analysis in a Diffusive Mussel-Algae Model with Delay , 2018, Int. J. Bifurc. Chaos.

[3]  Yuan Yuan,et al.  Spatiotemporal Dynamics of the Diffusive Mussel-Algae Model Near Turing-Hopf Bifurcation , 2017, SIAM J. Appl. Dyn. Syst..

[4]  Jonathan A Sherratt,et al.  How does tidal flow affect pattern formation in mussel beds? , 2016, Journal of theoretical biology.

[5]  Junjie Wei,et al.  Global bifurcation analysis and pattern formation in homogeneous diffusive predator–prey systems , 2016 .

[6]  Xiao-Qiang Zhao,et al.  A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species , 2016, Journal of mathematical biology.

[7]  Inthira Chaiya,et al.  Nonlinear stability analyses of Turing patterns for a mussel-algae model , 2015, Journal of mathematical biology.

[8]  Junjie Wei,et al.  Dynamics in a diffusive plankton system with delay and toxic substances effect , 2015 .

[9]  Marten Scheffer,et al.  Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems , 2014, Nature Communications.

[10]  Johan van de Koppel,et al.  Phase separation explains a new class of self-organized spatial patterns in ecological systems , 2013, Proceedings of the National Academy of Sciences.

[11]  J. Sherratt History-dependent patterns of whole ecosystems , 2013 .

[12]  Junjie Wei,et al.  The Effect of Delay on a Diffusive Predator-Prey System with Holling Type-Ii Predator Functional Response , 2012 .

[13]  Johan van de Koppel,et al.  Alternative mechanisms alter the emergent properties of self-organization in mussel beds , 2012, Proceedings of the Royal Society B: Biological Sciences.

[14]  Zhen Jin,et al.  Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds , 2008, Journal of The Royal Society Interface.

[15]  Mostafa Bendahmane,et al.  A reaction–diffusion system modeling predator–prey with prey-taxis , 2008 .

[16]  M. Rietkerk,et al.  Experimental Evidence for Spatial Self-Organization and Its Emergent Effects in Mussel Bed Ecosystems , 2008, Science.

[17]  Rui Peng,et al.  On stationary patterns of a reaction–diffusion model with autocatalysis and saturation law , 2008 .

[18]  Rui Peng,et al.  Stationary Pattern of a Ratio-Dependent Food Chain Model with Diffusion , 2007, SIAM J. Appl. Math..

[19]  Johan van de Koppel,et al.  Scale‐Dependent Feedback and Regular Spatial Patterns in Young Mussel Beds , 2005, The American Naturalist.

[20]  Gary M. Lieberman,et al.  Bounds for the Steady-State Sel'kov Model for Arbitrary p in Any Number of Dimensions , 2005, SIAM J. Math. Anal..

[21]  Mingxin Wang,et al.  Non‐Constant Positive Steady States of a Predator‐Prey System with Non‐Monotonic Functional Response and Diffusion , 2004 .

[22]  Mingxin Wang,et al.  Qualitative analysis of a ratio-dependent predator–prey system with diffusion , 2003, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[23]  L. Kumar,et al.  Self‐Organization of Vegetation in Arid Ecosystems , 2002, The American Naturalist.

[24]  E. Meron,et al.  Diversity of vegetation patterns and desertification. , 2001, Physical review letters.

[25]  Louis Nirenberg,et al.  Topics in Nonlinear Functional Analysis , 2001 .

[26]  Edgar Knobloch,et al.  Pattern formation in the three-dimensional reaction-diffusion systems , 1999 .

[27]  C. Klausmeier,et al.  Regular and irregular patterns in semiarid vegetation , 1999, Science.

[28]  Yuan Lou,et al.  Diffusion, Self-Diffusion and Cross-Diffusion , 1996 .

[29]  Horst Malchow Nonlinear plankton dynamics and pattern formation in an ecohydrodynamic model system , 1996 .

[30]  Chia-Ven Pao,et al.  Nonlinear parabolic and elliptic equations , 1993 .

[31]  Nicholas F. Britton,et al.  Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model , 1990 .

[32]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[33]  N. Britton Aggregation and the competitive exclusion principle. , 1989, Journal of Theoretical Biology.

[34]  Wei-Ming Ni,et al.  Large amplitude stationary solutions to a chemotaxis system , 1988 .

[35]  G. Odell,et al.  Swarms of Predators Exhibit "Preytaxis" if Individual Predators Use Area-Restricted Search , 1987, The American Naturalist.

[36]  Robert H. Martin,et al.  Global existence and boundedness in reaction-diffusion systems , 1987 .

[37]  J. M. Ball,et al.  GEOMETRIC THEORY OF SEMILINEAR PARABOLIC EQUATIONS (Lecture Notes in Mathematics, 840) , 1982 .

[38]  A. Ōkubo,et al.  Analysis of the self-shading effect on algal vertical distribution in natural waters , 1981 .

[39]  D. Hoff,et al.  LARGE TIME BEHAVIOR OF SOLUTIONS OF SYSTEMS OF NONLINEAR REACTION-DIFFUSION EQUATIONS* , 1978 .

[40]  Paul H. Rabinowitz,et al.  Some global results for nonlinear eigenvalue problems , 1971 .

[41]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.