The Chow form of the essential variety in computer vision

The Chow form of the essential variety in computer vision is calculated. Our derivation uses secant varieties, Ulrich sheaves and representation theory. Numerical experiments show that our formula can detect noisy point correspondences between two images.

[1]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[2]  David Eisenbud,et al.  Sheaf Cohomology and Free Resolutions over Exterior Algebras , 2003 .

[3]  A. Ortega,et al.  Minimal resolutions, Chow forms and Ulrich bundles on K3 surfaces , 2012, 1212.6248.

[4]  Rekha R. Thomas,et al.  The euclidean distance degree of orthogonally invariant matrix varieties , 2016, Israel Journal of Mathematics.

[5]  Olivier D. Faugeras,et al.  Motion from point matches: Multiplicity of solutions , 2004, International Journal of Computer Vision.

[6]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Steven V. Sam,et al.  Homology of Littlewood complexes , 2012, 1209.3509.

[8]  Richard Szeliski,et al.  Building Rome in a day , 2009, ICCV.

[9]  J. Weyman Cohomology of Vector Bundles and Syzygies , 2003 .

[10]  L. Chiantini,et al.  Weakly defective varieties , 2001 .

[11]  M. Marshall Positive polynomials and sums of squares , 2008 .

[12]  Rekha R. Thomas,et al.  Counting real critical points of the distance to spectral matrix sets , 2015, 1502.02074.

[13]  Steven V. Sam,et al.  Pieri resolutions for classical groups , 2009, 0907.4505.

[14]  Computing inclusions of Schur modules , 2008, 0810.4666.

[15]  Rekha R. Thomas,et al.  The Euclidean Distance Degree of an Algebraic Variety , 2013, Foundations of Computational Mathematics.

[16]  P. Wilson,et al.  DISCRIMINANTS, RESULTANTS AND MULTIDIMENSIONAL DETERMINANTS (Mathematics: Theory and Applications) , 1996 .

[17]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[18]  Thomas S. Huang,et al.  Theory of Reconstruction from Image Motion , 1992 .

[19]  Bernard Leclerc,et al.  Splitting the Square of a Schur Function into its Symmetric and Antisymmetric Parts , 1995 .

[20]  Hirokazu Murao,et al.  On Factorizing the Symbolic U-Resultant - Application of the ddet Operator - , 1993, J. Symb. Comput..

[21]  Rekha R. Thomas,et al.  Certifying the Existence of Epipolar Matrices , 2014, ArXiv.

[22]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[23]  Free resolutions and modules with a semisimple Lie group action , 2015 .

[24]  Joe Harris,et al.  On symmetric and skew-symmetric determinantal varieties , 1984 .

[25]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[26]  Rekha R. Thomas,et al.  On the Existence of Epipolar Matrices , 2015, International Journal of Computer Vision.

[27]  G. Laumon,et al.  A Series of Modern Surveys in Mathematics , 2000 .

[28]  Bernd Sturmfels,et al.  Quartic curves and their bitangents , 2010, J. Symb. Comput..

[29]  David Eisenbud,et al.  Resultants and Chow forms via exterior syzygies , 2001, math/0111040.

[30]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[31]  Bernd Sturmfels,et al.  Rigid multiview varieties , 2015, Int. J. Algebra Comput..

[32]  Jerry D. Gibson,et al.  Handbook of Image and Video Processing , 2000 .

[33]  Arthur Cayley,et al.  A Treatise on the Higher Plane Curves: Intended as a Sequel to a Treatise on Conic Sections , 2001 .