Inferring gene correlation networks from transcription factor binding sites.

Gene expression is a highly regulated biological process that is fundamental to the existence of phenotypes of any living organism. The regulatory relations are usually modeled as a network; simply, every gene is modeled as a node and relations are shown as edges between two related genes. This paper presents a novel method for inferring correlation networks, networks constructed by connecting co-expressed genes, through predicting co-expression level from genes promoter's sequences. According to the results, this method works well on biological data and its outcome is comparable to the methods that use microarray as input. The method is written in C++ language and is available upon request from the corresponding author.

[1]  Patrik D'haeseleer,et al.  Genetic network inference: from co-expression clustering to reverse engineering , 2000, Bioinform..

[2]  G. Church,et al.  Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation , 1998, Nature Biotechnology.

[3]  Alina Sîrbu,et al.  Comparison of evolutionary algorithms in gene regulatory network model inference , 2010, BMC Bioinformatics.

[4]  D. Guhathakurta,et al.  Computational identification of transcriptional regulatory elements in DNA sequence , 2006, Nucleic acids research.

[5]  Nicola J. Rinaldi,et al.  Computational discovery of gene modules and regulatory networks , 2003, Nature Biotechnology.

[6]  Timothy S Gardner,et al.  Reverse-engineering transcription control networks. , 2005, Physics of life reviews.

[7]  Alvis Brazma,et al.  Current approaches to gene regulatory network modelling , 2007, BMC Bioinformatics.

[8]  P. Brazhnik,et al.  Gene networks: how to put the function in genomics. , 2002, Trends in biotechnology.

[9]  David Botstein,et al.  SGD: Saccharomyces Genome Database , 1998, Nucleic Acids Res..

[10]  Michael A. Beer,et al.  Predicting Gene Expression from Sequence , 2004, Cell.

[11]  Min Chen,et al.  Comparing Statistical Methods for Constructing Large Scale Gene Networks , 2012, PloS one.

[12]  L. Hood,et al.  Regulatory gene networks and the properties of the developmental process , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Andreas Zell,et al.  Optimizing Topology and Parameters of Gene Regulatory Network Models from Time-Series Experiments , 2004, GECCO.

[14]  Douglas L. Brutlag,et al.  BioProspector: Discovering Conserved DNA Motifs in Upstream Regulatory Regions of Co-Expressed Genes , 2000, Pacific Symposium on Biocomputing.

[15]  Mariko Okada,et al.  Inference of S-system models of genetic networks using a genetic local search , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[16]  Hitoshi Iba,et al.  Reverse engineering gene regulatory network from microarray data using linear time-variant model , 2010, BMC Bioinformatics.

[17]  I S Kohane,et al.  Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[18]  Ernest Fraenkel,et al.  Practical Strategies for Discovering Regulatory DNA Sequence Motifs , 2006, PLoS Comput. Biol..

[19]  Masaru Tomita,et al.  Dynamic modeling of genetic networks using genetic algorithm and S-system , 2003, Bioinform..

[20]  Eric C. Rouchka,et al.  rMotifGen: random motif generator for DNA and protein sequences , 2007, BMC Bioinformatics.

[21]  P. Geurts,et al.  Inferring Regulatory Networks from Expression Data Using Tree-Based Methods , 2010, PloS one.

[22]  Pooja Jain,et al.  The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae , 2005, Nucleic Acids Res..

[23]  Michael Hecker,et al.  Gene regulatory network inference: Data integration in dynamic models - A review , 2009, Biosyst..

[24]  D. Latchman Gene Regulation: A Eukaryotic Perspective , 1990 .

[25]  Charles Elkan,et al.  Unsupervised learning of multiple motifs in biopolymers using expectation maximization , 1995, Mach. Learn..

[26]  Satoru Miyano,et al.  Identification of Genetic Networks from a Small Number of Gene Expression Patterns Under the Boolean Network Model , 1998, Pacific Symposium on Biocomputing.

[27]  M. Sadeghi,et al.  Transcription factor binding sites detection by using alignment-based approach. , 2012, Journal of theoretical biology.

[28]  Angel Rubio,et al.  Correlation between Gene Expression and GO Semantic Similarity , 2005, TCBB.

[29]  H. K. Dai,et al.  A survey of DNA motif finding algorithms , 2007, BMC Bioinformatics.

[30]  Ting Chen,et al.  Modeling Gene Expression with Differential Equations , 1998, Pacific Symposium on Biocomputing.

[31]  R. van Driel,et al.  The eukaryotic genome: a system regulated at different hierarchical levels , 2003, Journal of Cell Science.

[32]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[33]  Vladimir Filkov,et al.  Identifying Gene Regulatory Networks from Gene Expression Data , 2005 .

[34]  K. Burrage,et al.  Stochastic models for regulatory networks of the genetic toggle switch. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[36]  Kevin Y. Yip,et al.  Improved Reconstruction of In Silico Gene Regulatory Networks by Integrating Knockout and Perturbation Data , 2010, PloS one.

[37]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[38]  Steven Skiena,et al.  Analysis Techniques for Microarray Time-Series Data , 2002, J. Comput. Biol..

[39]  D Husmeier,et al.  Reverse engineering of genetic networks with Bayesian networks. , 2003, Biochemical Society transactions.

[40]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[41]  S. Kauffman Homeostasis and Differentiation in Random Genetic Control Networks , 1969, Nature.

[42]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.

[43]  Giorgio Valentini,et al.  Classification of co-expressed genes from DNA regulatory regions , 2009, Inf. Fusion.

[44]  M. Gerstein,et al.  Genomic analysis of gene expression relationships in transcriptional regulatory networks. , 2003, Trends in genetics : TIG.

[45]  S. Richardson,et al.  Bayesian Modeling of Differential Gene Expression , 2006, Biometrics.

[46]  George Karypis,et al.  A Boolean algorithm for reconstructing the structure of regulatory networks. , 2004, Metabolic engineering.

[47]  Jean-Loup Faulon,et al.  Boolean dynamics of genetic regulatory networks inferred from microarray time series data , 2007, Bioinform..

[48]  H. Lodish Molecular Cell Biology , 1986 .

[49]  E. Marcotte,et al.  An Improved, Bias-Reduced Probabilistic Functional Gene Network of Baker's Yeast, Saccharomyces cerevisiae , 2007, PloS one.

[50]  Gerhard Klebe,et al.  Prediction of turn types in protein structure by machine‐learning classifiers , 2009, Proteins.

[51]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[52]  Quaid Morris,et al.  Transcriptional networks: reverse-engineering gene regulation on a global scale. , 2004, Current opinion in microbiology.

[53]  Olivier Bodenreider,et al.  Gene expression correlation and gene ontology-based similarity: an assessment of quantitative relationships , 2004, 2004 Symposium on Computational Intelligence in Bioinformatics and Computational Biology.

[54]  Michael Q. Zhang,et al.  SCPD: a promoter database of the yeast Saccharomyces cerevisiae , 1999, Bioinform..

[55]  Kathleen Marchal,et al.  A Gibbs sampling method to detect over-represented motifs in the upstream regions of co-expressed genes , 2001, RECOMB.

[56]  Edward Keedwell,et al.  Discovering Gene Networks with a Neural-Genetic Hybrid , 2005, TCBB.

[57]  Julio Collado-Vides,et al.  RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12 , 2004, Nucleic Acids Res..

[58]  Aurélien Mazurie,et al.  Gene networks inference using dynamic Bayesian networks , 2003, ECCB.

[59]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[60]  Gary D. Stormo,et al.  Identifying DNA and protein patterns with statistically significant alignments of multiple sequences , 1999, Bioinform..

[61]  Hitoshi Iba,et al.  Inference of genetic networks using S-system: information criteria for model selection , 2006, GECCO.

[62]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[63]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of molecular biology.

[64]  J. Vohradský Neural network model of gene expression , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[65]  William Stafford Noble,et al.  Assessing computational tools for the discovery of transcription factor binding sites , 2005, Nature Biotechnology.

[66]  Kevin Kontos,et al.  Information-Theoretic Inference of Large Transcriptional Regulatory Networks , 2007, EURASIP J. Bioinform. Syst. Biol..

[67]  Saeed Tavazoie,et al.  Mapping Global Histone Acetylation Patterns to Gene Expression , 2004, Cell.

[68]  Gerhard-Wilhelm Weber,et al.  Modeling gene regulatory networks with piecewise linear differential equations , 2007, Eur. J. Oper. Res..

[69]  E. Davidson Genomic Regulatory Systems: Development and Evolution , 2005 .