Global economic effects of changes in crops , pasture , and forests due to changing climate , carbon dioxide , and ozone

Multiple environmental changes will have consequences for global vegetation. To the extent that crop yields and pasture and forest productivity are affected, there can be important economic consequences. We examine the combined effects of changes in climate, increases in carbon dioxide (CO2), and changes in tropospheric ozone on crop, pasture, and forest lands and the consequences for the global and regional economies. We examine scenarios where there is limited or little effort to control these substances, and policy scenarios that limit emissions of CO2 and ozone precursors. We find the effects of climate and CO2 to be generally positive, and the effects of ozone to be very detrimental. Unless ozone is strongly controlled, damage could offset CO2 and climate benefits. We find that resource allocation among sectors in the economy, and trade among countries, can strongly affect the estimate of economic effect in a country. r 2007 Elsevier Ltd. All rights reserved.

[1]  G. Fischer,et al.  Crop response to elevated CO2 and world food supply A comment on: Food for Thought... by Long et al., Science 312: 1918-1921, 2006 , 2007 .

[2]  Bruce A. McCarl,et al.  Projecting impacts of global climate change on the US forest and agriculture sectors and carbon budgets , 2002 .

[3]  Timothy R. Carter,et al.  The Impact of climatic variations on agriculture , 1988 .

[4]  Andrei P. Sokolov,et al.  Quantifying Uncertainties in Climate System Properties with the Use of Recent Climate Observations , 2002, Science.

[5]  A. McGuire,et al.  Global climate change and terrestrial net primary production , 1993, Nature.

[6]  Robert McDougall,et al.  Global trade, assistance, and production : The GTAP 5 Data Base , 2002 .

[7]  John M. Reilly,et al.  Future Effects of Ozone on Carbon Sequestration and Climate Change Policy Using a Global Biogeochemical Model , 2005 .

[8]  Andrei P. Sokolov,et al.  Linking a global terrestrial biogeochemical model and a 2‐dimensional climate model: implications for the global carbon budget , 1997 .

[9]  J. Melillo,et al.  Multi-gas assessment of the Kyoto Protocol , 1999, Nature.

[10]  Sergey Paltsev,et al.  The MIT Emissions Prediction and Policy Analysis (EPPA) Model: Version 4 , 2005 .

[11]  J. Magnuson,et al.  Ecosystems and Their Goods and Services , 2001 .

[12]  John M. Reilly,et al.  Effects of Air Pollution Control on Climate , 2005 .

[13]  Richard S. Eckaus,et al.  The MIT Emissions Prediction and Policy Analysis (EPPA) model : revisions, sensitivities, and comparisons of results , 2001 .

[14]  Ronald G. Prinn,et al.  Ozone effects on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model , 2002 .

[15]  Paul J. Crutzen,et al.  A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model description and ozone results , 2003 .

[16]  John M. Reilly,et al.  Is Emissions Trading Always Beneficial , 2003 .

[17]  N. Ramankutty,et al.  Estimating historical changes in global land cover: Croplands from 1700 to 1992 , 1999 .

[18]  Mark Lawrence,et al.  A model for studies of tropospheric photochemistry: Description, global distributions, and evaluation , 1999 .

[19]  J. Reilly,et al.  Climate change and agriculture: The role of international trade , 1993 .

[20]  F. Joos,et al.  A first‐order analysis of the potential rôle of CO2 fertilization to affect the global carbon budget: a comparison of four terrestrial biosphere models , 1999 .

[21]  D. Mauzerall,et al.  Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020 , 2004 .

[22]  K. Segerson Agriculture: The Potential Consequences of Climate Variability and Change , 2004 .

[23]  Berrien Moore,et al.  Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle , 2003 .

[24]  George B. Frisvold,et al.  Agricultural exposure to ozone and acid precipitation , 1994 .

[25]  C. Rosenzweig,et al.  Potential impact of climate change on world food supply , 1994, Nature.

[26]  G. Fischer,et al.  Climate change and world food security: a new assessment , 1999 .

[27]  John M. Reilly,et al.  Representing energy technologies in top-down economic models using bottom-up information , 2004 .

[28]  Henry D. Jacoby,et al.  Annex I differentiation proposals : implications for welfare, equity and policy , 1997 .

[29]  M. Sarofim,et al.  Uncertainty in emissions projections for climate models , 2002 .

[30]  W. Patterson Energy policy , 1978, Nature.

[31]  Bruce A. McCarl,et al.  The Benefits of Pollution Control: The Case of Ozone and U.S. Agriculture , 1986 .

[32]  Bruce A. McCarl,et al.  U.S. Agriculture and Climate Change: New Results , 2003 .

[33]  P. Reich,et al.  Quantifying plant response to ozone: a unifying theory. , 1987, Tree physiology.

[34]  N. Mahowald,et al.  Transport of 222radon to the remote troposphere using the Model of Atmospheric Transport and Chemistry and assimilated winds from ECMWF and the National Center for Environmental Prediction/NCAR , 1997 .

[35]  John M. Reilly,et al.  Crop response to elevated CO 2 and world food supply , 2007 .

[36]  I. C. Prentice,et al.  Carbon balance of the terrestrial biosphere in the Twentieth Century: Analyses of CO2, climate and land use effects with four process‐based ecosystem models , 2001 .

[37]  Marinos E. Tsigas,et al.  Land use and cover in ecological economics , 1996 .

[38]  G. Frisvold,et al.  Air Pollution and Farm-Level Crop Yields: An Empirical Analysis of Corn and Soybeans , 1995, Agricultural and Resource Economics Review.

[39]  W. Nordhaus,et al.  The Impact of Global Warming on Agriculture: A Ricardian Analysis: Reply , 1999 .

[40]  Hanqin Tian,et al.  The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States , 1999 .

[41]  Xiaodu Wang,et al.  The economic impact of global climate and tropospheric oxone on world agricultural production , 2005 .

[42]  Sergey Paltsev,et al.  MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation , 2005 .

[43]  W. Godwin Article in Press , 2000 .

[44]  T. Carter,et al.  The impact of climatic variations on agriculture. Volume 2: Assessments in semi-arid regions. , 1988 .

[45]  N. Ramankutty,et al.  Characterizing patterns of global land use: An analysis of global croplands data , 1998 .

[46]  James W. Jones,et al.  Global climate change and US agriculture , 1990, Nature.

[47]  R. Cesar Izaurralde,et al.  Integrated assessment of Hadley Center (HadCM2) climate-change impacts on agricultural productivity and irrigation water supply in the conterminous United States: Part II. Regional agricultural production in 2030 and 2095 , 2003 .

[48]  Henry D. Jacoby,et al.  Integrated Global System Model for Climate Policy Assessment: Feedbacks and Sensitivity Studies , 1999 .

[49]  Andrei P. Sokolov,et al.  Joint Program on the Science and Policy of Global Change Estimated PDFs of Climate System Properties Including Natural and Anthropogenic Forcings , 2005 .

[50]  Sergey Paltsev,et al.  Emissions trading to reduce greenhouse gas emissions in the United States : the McCain-Lieberman Proposal , 2003 .

[51]  John M. Reilly,et al.  The Kyoto Protocol and non-CO2 Greenhouse Gases and Carbon Sinks , 2002 .

[52]  A. Denny Ellerman,et al.  CO2 Emissions Limits: Economic Adjustments and the Distribution of Burdens , 1997 .

[53]  Philip J. Rasch,et al.  Representations of transport, convection, and the hydrologic cycle in chemical transport models : Implications for the modeling of short-lived and soluble species , 1997 .

[54]  D. Reiner,et al.  The evolution of a climate regime: Kyoto to Marrakech , 2002 .

[55]  G. Fischer,et al.  Effects of climate change on global food production under SRES emissions and socio-economic scenarios , 2004 .

[56]  M. Sarofim,et al.  Uncertainty Analysis of Climate Change and Policy Response , 2003 .

[57]  S. Long,et al.  Food for Thought: Lower-Than-Expected Crop Yield Stimulation with Rising CO2 Concentrations , 2006, Science.

[58]  J. Reilly,et al.  Economic Implications Of Global Climate Change For World Agriculture , 1992 .

[59]  Scott V. Ollinger,et al.  SIMULATING OZONE EFFECTS ON FOREST PRODUCTIVITY: INTERACTIONS AMONG LEAF‐, CANOPY‐, AND STAND‐LEVEL PROCESSES , 1997 .

[60]  John M. Reilly,et al.  Agricultural Impact Assessment, Vulnerability, and the Scope for Adaptation , 1999 .