Electroluminescence Studies of Modulation p-Doped Quantum Dot Laser Structures
暂无分享,去创建一个
M. Hopkinson | J. David | R. Hogg | T. Badcock | D. Mowbray | N. Hasbullah | R. Alexander
[1] M. Hopkinson,et al. Correlation between defect density and current leakage in InAs∕GaAs quantum dot-in-well structures , 2009 .
[2] Q. Jiang,et al. A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap , 2009, Nanotechnology.
[3] M. Hopkinson,et al. Dependence of the Electroluminescence on the Spacer Layer Growth Temperature of Multilayer Quantum-Dot Laser Structures , 2009, IEEE Journal of Quantum Electronics.
[4] C. Jin,et al. Simple theoretical model for the temperature stability of InAs/GaAs self-assembled quantum dot lasers with different p-type modulation doping levels , 2008 .
[5] M. S. Skolnick,et al. Enhanced nonradiative Auger recombination in p-type modulation doped InAs/GaAs quantum dots , 2008 .
[6] M. Ishida,et al. Systematic Study of the Effects of Modulation p-Doping on 1.3-$\mu{\hbox {m}}$ Quantum-Dot Lasers , 2007, IEEE Journal of Quantum Electronics.
[7] Kristian M. Groom,et al. Low threshold current density and negative characteristic temperature 1.3 μm InAs self-assembled quantum dot lasers , 2007 .
[8] A. Stintz,et al. Thermal activation of excitons in asymmetric InAs dots-in-a-well InxGa1−xAs∕GaAs structures , 2007 .
[9] M. Hopkinson,et al. Observation and Modeling of a Room-Temperature Negative Characteristic Temperature 1.3-$\mu$m p-Type Modulation-Doped Quantum-Dot Laser , 2006, IEEE Journal of Quantum Electronics.
[10] Ben J. Stevens,et al. p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency , 2006 .
[11] M. Hopkinson,et al. The effect of p doping in InAs quantum dot lasers , 2006 .
[12] Mitsuru Sugawara,et al. Carrier transport and recombination in p-doped and intrinsic 1.3μm InAs∕GaAs quantum-dot lasers , 2005 .
[13] M. S. Skolnick,et al. Improved temperature performance of 1.31-/spl mu/m quantum dot lasers by optimized ridge waveguide design , 2005, IEEE Photonics Technology Letters.
[14] Mikhail V. Maximov,et al. High power temperature-insensitive 1.3 µm InAs/InGaAs/GaAs quantum dot lasers , 2005 .
[15] M. Ishida,et al. Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs∕GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection , 2005 .
[16] Sasan Fathpour,et al. The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers , 2004 .
[17] Kristian M. Groom,et al. Improved performance of 1.3μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer , 2004 .
[18] A. Piskarskas,et al. Hole trapping time measurement in low-temperature-grown gallium arsenide , 2003 .
[19] D. Deppe,et al. Low-threshold high-T/sub 0/ 1.3-/spl mu/m InAs quantum-dot lasers due to p-type modulation doping of the active region , 2002, IEEE Photonics Technology Letters.
[20] Dennis G. Deppe,et al. 1.3 μm InAs quantum dot laser with To=161 K from 0 to 80 °C , 2002 .
[21] H. Sakaki,et al. Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .