On an algebra of operators related to flnite traces on a von Neumann algebra

Given a von Neumann algebra M with a faithful normal flnite trace, we introduce the so called flnite tracial algebra Mf as the intersection of Lp-spaces Lp(M;„) over all p ‚ 1 and all faithful normal flnite traces „ on M: Basic algebraic and topological properties of these algebras are studied.

[1]  A. Eberle,et al.  Quantitative approximations of evolving probability measures and sequential Markov chain Monte Carlo methods , 2010, Probability Theory and Related Fields.

[2]  Michael Griebel,et al.  Homogenization and Numerical Simulation of Flow in Geometries with Textile Microstructures , 2010, Multiscale Model. Simul..

[3]  Sergio Albeverio,et al.  Arens spaces associated with von Neumann algebras and normal states , 2010 .

[4]  Helmut Harbrecht,et al.  A finite element method for elliptic problems with stochastic input data , 2010 .

[5]  H. Weber On the short time asymptotic of the stochastic Allen–Cahn equation , 2009, 0908.0580.

[6]  Sören Bartels,et al.  Semi-Implicit Approximation of Wave Maps into Smooth or Convex Surfaces , 2009, SIAM J. Numer. Anal..

[7]  Tobias Finis,et al.  The spectral side of Arthur's trace formula , 2009, Proceedings of the National Academy of Sciences.

[8]  Michael Griebel,et al.  Optimized general sparse grid approximation spaces for operator equations , 2009, Math. Comput..

[9]  Erez Lapid,et al.  SPECTRAL ASYMPTOTICS FOR ARITHMETIC QUOTIENTS OF SL(n,R)/SO(n) , 2007, 0711.2925.

[10]  Rolf Krause,et al.  A Recursive Trust-Region Method for Non-Convex Constrained Minimization , 2009 .

[11]  Michael Griebel,et al.  The BGY3dM model for the approximation of solvent densities. , 2008, The Journal of chemical physics.

[12]  S. Albeverio,et al.  Structure of derivations on various algebras of measurable operators for type I von Neumann algebras , 2008, 0808.0149.

[13]  S. Albeverio,et al.  Complete description of derivations on -compact operators for type I von Neumann algebras , 2008, 0807.4316.

[14]  S. Albeverio,et al.  On the classification of complex Leibniz superalgebras with characteristic sequence $(n-1, 1 | m_1, ..., m_k)$ and nilindex $n+m$ , 2008, 0806.4743.

[15]  S. Albeverio,et al.  On classification of singular measures and fractal properties of quasi-self-affine measures in R 2 , 2008 .

[16]  S. Albeverio,et al.  Derivations on the Algebra of τ-Compact Operators Affiliated with a Type I von Neumann Algebra , 2007, math/0703331.

[17]  S. Albeverio,et al.  Non-commutative Arens algebras and their derivations , 2007, math/0703170.

[18]  Tobias Finis,et al.  ON THE SPECTRAL SIDE OF ARTHUR’S TRACE FORMULA II , 2007 .

[19]  G. Pisier,et al.  Non-commutative L p spaces , 2003 .

[20]  竹崎 正道 Theory of operator algebras , 2002 .

[21]  Y. Brudnyi,et al.  Interpolation of linear operators , 2002 .

[22]  M. Takesaki,et al.  Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.

[23]  F. J. Yeadon Non-commutative LP-spaces , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  Elias M. Stein,et al.  Interpolation of linear operators , 1956 .

[25]  Irving Segal,et al.  A Non-Commutative Extension of Abstract Integration , 1953 .