THE FERMI BUBBLES: SUPERSONIC ACTIVE GALACTIC NUCLEUS JETS WITH ANISOTROPIC COSMIC-RAY DIFFUSION

The Fermi Gamma-Ray Space Telescope reveals two large bubbles in the Galaxy, which extend nearly symmetrically ∼50° above and below the Galactic center. Using three-dimensional (3D) magnetohydrodynamic simulations that self-consistently include the dynamical interaction between cosmic rays (CRs) and thermal gas and anisotropic CR diffusion along the magnetic field lines, we show that the key characteristics of the observed gamma-ray bubbles and the spatially correlated X-ray features in the ROSAT 1.5 keV map can be successfully reproduced by recent jet activity from the central active galactic nucleus. We find that after taking into account the projection of the 3D bubbles onto the sky the physical heights of the bubbles can be much smaller than previously thought, greatly reducing the formation time of the bubbles to about a Myr. This relatively small bubble age is needed to reconcile the simulations with the upper limit of bubble ages estimated from the cooling time of high-energy electrons. No additional physical mechanisms are required to suppress large-scale hydrodynamic instabilities because the evolution time is too short for them to develop. The simulated CR bubbles are edge-brightened, which is consistent with the observed projected flat surface brightness distribution. Furthermore, we demonstrate that the sharp edges of the observed bubbles can be due to anisotropic CR diffusion along magnetic field lines that drape around the bubbles during their supersonic expansion, with suppressed perpendicular diffusion across the bubble surface. Possible causes of the slight bends of the Fermi bubbles to the west are also discussed.

[1]  D. Finkbeiner,et al.  EVIDENCE FOR GAMMA-RAY JETS IN THE MILKY WAY , 2012, 1205.5852.

[2]  A. Noutsos The Magnetic Field of the Milky Way from Faraday Rotation of Pulsars and Extragalactic Sources , 2012 .

[3]  J. Ott,et al.  MAGNETIC SUBSTRUCTURE IN THE NORTHERN FERMI BUBBLE REVEALED BY POLARIZED MICROWAVE EMISSION , 2012, 1201.4491.

[4]  G. Dobler,et al.  THE FERMI BUBBLES. II. THE POTENTIAL ROLES OF VISCOSITY AND COSMIC-RAY DIFFUSION IN JET MODELS , 2011, 1110.0834.

[5]  Gregory Dobler,et al.  A LAST LOOK AT THE MICROWAVE HAZE/BUBBLES WITH WMAP , 2011, 1109.4418.

[6]  W. Mathews,et al.  THE FERMI BUBBLES. I. POSSIBLE EVIDENCE FOR RECENT AGN JET ACTIVITY IN THE GALAXY , 2011, 1103.0055.

[7]  M. Haverkorn,et al.  Magnetic Fields in Galactic Haloes , 2011, 1102.3701.

[8]  P. Ricker,et al.  An examination of magnetized outflows from active galactic nuclei in galaxy clusters , 2011, 1108.3344.

[9]  D. Falceta-Gonçalves Interstellar Turbulence , 2011, 1102.0253.

[10]  A. Marcowith,et al.  The 511 keV emission from positron annihilation in the Galaxy , 2010, 1009.4620.

[11]  F. Aharonian,et al.  Fermi bubbles: giant, multibillion-year-old reservoirs of Galactic center cosmic rays. , 2010, Physical review letters.

[12]  D. Finkbeiner,et al.  GIANT GAMMA-RAY BUBBLES FROM FERMI-LAT: ACTIVE GALACTIC NUCLEUS ACTIVITY OR BIPOLAR GALACTIC WIND? , 2010, 1005.5480.

[13]  D. Falceta-Gonçalves,et al.  PRECESSING JETS AND X-RAY BUBBLES FROM NGC 1275 (3C 84) IN THE PERSEUS GALAXY CLUSTER: A VIEW FROM THREE-DIMENSIONAL NUMERICAL SIMULATIONS , 2010, 1003.2406.

[14]  F. Jenko,et al.  SCALING THEORY FOR CROSS-FIELD TRANSPORT OF COSMIC RAYS IN TURBULENT FIELDS , 2010 .

[15]  J. Ott,et al.  A lower limit of 50 microgauss for the magnetic field near the Galactic Centre , 2010, Nature.

[16]  M. Lister,et al.  EXTENDED RADIO EMISSION IN MOJAVE BLAZARS: CHALLENGES TO UNIFICATION , 2010, 1001.0731.

[17]  Gregory Dobler,et al.  THE FERMI HAZE: A GAMMA-RAY COUNTERPART TO THE MICROWAVE HAZE , 2009, 0910.4583.

[18]  E. Zweibel,et al.  SYNCHROTRON CONSTRAINTS ON A HYBRID COSMIC-RAY AND THERMALLY DRIVEN GALACTIC WIND , 2009, 0904.1964.

[19]  T. Landecker,et al.  The Dynamic Interstellar Medium: A Celebration of the Canadian Galactic Plane Survey , 2010 .

[20]  D. Kazanas,et al.  THE INVARIANT TWIST OF MAGNETIC FIELDS IN THE RELATIVISTIC JETS OF ACTIVE GALACTIC NUCLEI , 2009, 0907.3619.

[21]  Dongwook Lee,et al.  An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics , 2009, J. Comput. Phys..

[22]  J. Grcevich,et al.  H i IN LOCAL GROUP DWARF GALAXIES AND STRIPPING BY THE GALACTIC HALO , 2009, 0901.4975.

[23]  L. Reid,et al.  Introduction to FLASH 3.0, with application to supersonic turbulence , 2008 .

[24]  Yann Rasera,et al.  Numerical Simulations of Buoyancy Instabilities in Galaxy Cluster Plasmas with Cosmic Rays and Anisotropic Thermal Conduction , 2008, 0809.0354.

[25]  F. Brighenti,et al.  Energetics of X-Ray Cavities and Radio Lobes in Galaxy Clusters , 2008, 0805.2441.

[26]  D. Finkbeiner,et al.  Extended Anomalous Foreground Emission in the WMAP Three-Year Data , 2007, 0712.1038.

[27]  D. McCammon,et al.  The Milky Way’s Kiloparsec-Scale Wind: A Hybrid Cosmic-Ray and Thermally Driven Outflow , 2007, 0710.3712.

[28]  Durham,et al.  Ram pressure stripping the hot gaseous haloes of galaxies in groups and clusters , 2007, 0710.0964.

[29]  T. Ensslin,et al.  Cosmic ray feedback in hydrodynamical simulations of galaxy formation , 2006, astro-ph/0603485.

[30]  Kim A. Venn,et al.  Ram Pressure Stripping of an Isolated Local Group Dwarf Galaxy: Evidence for an Intragroup Medium , 2007, 0710.4582.

[31]  P. Nulsen,et al.  Heating Hot Atmospheres with Active Galactic Nuclei , 2007, 0709.2152.

[32]  Prateek Sharma,et al.  Preserving monotonicity in anisotropic diffusion , 2007, J. Comput. Phys..

[33]  J. Bregman,et al.  X-Ray Absorption from the Milky Way Halo and the Local Group , 2007, 0707.1699.

[34]  T. Ensslin,et al.  Cosmic ray confinement in fossil cluster bubbles , 2007, 0705.3235.

[35]  T. Cox,et al.  The collision between the Milky Way and Andromeda , 2007, 0705.1170.

[36]  Garching,et al.  Impact of tangled magnetic fields on fossil radio bubbles , 2007, astro-ph/0703801.

[37]  A. Strong,et al.  Cosmic-Ray Propagation and Interactions in the Galaxy , 2007, astro-ph/0701517.

[38]  F. Miniati Glimm-Godunov's method for cosmic-ray-hydrodynamics , 2006, J. Comput. Phys..

[39]  T. Ensslin,et al.  Cosmic ray physics in calculations of cosmological structure formation , 2006, astro-ph/0603484.

[40]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[41]  U. Oxford,et al.  A relativistic model of the radio jets in 3C296 , 2006, astro-ph/0608088.

[42]  T. Totani A RIAF Interpretation for the Past Higher Activity of the Galactic Center Black Hole and the 511 keV Annihilation Emission , 2006, astro-ph/0607414.

[43]  N. Soker,et al.  On the Rayleigh–Taylor instability of radio bubbles in galaxy clusters , 2006, astro-ph/0605534.

[44]  G. Lapenta,et al.  Modeling the Large-Scale Structures of Astrophysical Jets in the Magnetically Dominated Limit , 2006, astro-ph/0604469.

[45]  S. Baum,et al.  A Survey of Kiloparsec-Scale Radio Outflows in Radio-Quiet Active Galactic Nuclei , 2006, astro-ph/0604219.

[46]  M. Lyutikov Magnetic draping of merging cores and radio bubbles in clusters of galaxies , 2006, astro-ph/0604178.

[47]  T. Ensslin,et al.  Detecting shock waves in cosmological smoothed particle hydrodynamics simulations , 2006, astro-ph/0603483.

[48]  T. Paumard,et al.  The Two Young Star Disks in the Central Parsec of the Galaxy: Properties, Dynamics, and Formation , 2006, astro-ph/0601268.

[49]  M. Wolfire,et al.  A Galactic Origin for the Local Ionized X-Ray Absorbers , 2005, astro-ph/0511777.

[50]  James M. Stone,et al.  Nonlinear Evolution of the Magnetothermal Instability in Two Dimensions , 2005, astro-ph/0507212.

[51]  D. Harris,et al.  An X-Ray Study of Magnetic Field Strengths and Particle Content in the Lobes of FR II Radio Sources , 2005, astro-ph/0503203.

[52]  Usa,et al.  The Two-sided Parsec-Scale Structure of the Low-Luminosity Active Galactic Nucleus in NGC 4278 , 2004, astro-ph/0412204.

[53]  Russell M. Kulsrud,et al.  Plasma Physics for Astrophysics , 2020 .

[54]  D. Finkbeiner Microwave Interstellar Medium Emission Observed by the Wilkinson Microwave Anisotropy Probe , 2004 .

[55]  Cambridge,et al.  Hard X-ray view of the past activity of Sgr A in a natural Compton mirror , 2004, astro-ph/0408190.

[56]  H. Falcke,et al.  Motion and properties of nuclear radio components in Seyfert galaxies seen with VLBI , 2004, astro-ph/0402142.

[57]  D. Finkbeiner Microwave ISM Emission Observed by WMAP , 2003, astro-ph/0311547.

[58]  T. Ensslin,et al.  The magnetic power spectrum in Faraday rotation screens , 2003, astro-ph/0302426.

[59]  Jongsoo Kim,et al.  The Effect of Cosmic-Ray Diffusion on the Parker Instability , 2003, astro-ph/0301625.

[60]  F. Paerels,et al.  X-Ray IGM in the Local Group , 2003, astro-ph/0301183.

[61]  D. Ryu,et al.  Cosmic-Ray Electrons in Groups and Clusters of Galaxies: Primary and Secondary Populations from a Numerical Cosmological Simulation , 2001, astro-ph/0108305.

[62]  S. Colgate,et al.  Magnetic Energy of the Intergalactic Medium from Galactic Black Holes , 2001, astro-ph/0106281.

[63]  A. Helmi,et al.  Simple dynamical models of the Sagittarius dwarf galaxy , 2000, astro-ph/0002482.

[64]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[65]  N. E. Kassim,et al.  M87 at 90 Centimeters: A Different Picture , 2000, astro-ph/0006150.

[66]  S. H. Moseley,et al.  A High Spectral Resolution Observation of the Soft X-Ray Diffuse Background with Thermal Detectors , 2000, astro-ph/0205012.

[67]  L. Blitz,et al.  Gas-Rich Dwarf Spheroidals , 2000, astro-ph/0001142.

[68]  Kazunari Shibata,et al.  Relativistic Jet Formation from Black Hole Magnetized Accretion Disks: Method, Tests, and Applications of a General RelativisticMagnetohydrodynamic Numerical Code , 1999 .

[69]  A. Ferrari,et al.  MODELING EXTRAGALACTIC JETS , 1998 .

[70]  Dan McCammon,et al.  ROSAT Survey Diffuse X-Ray Background Maps. II. , 1997 .

[71]  Yasuo Tanaka,et al.  ASCA View of Our Galactic Center: Remains of Past Activities in X-Rays? , 1996 .

[72]  L. Tao On the suppression of thermal conduction by magnetic fields , 1995 .

[73]  Duane A. Liedahl,et al.  New Calculations of Fe L-Shell X-Ray Spectra in High-Temperature Plasmas , 1995 .

[74]  M. Norman,et al.  Three-dimensional hydrodynamic simulations of narrow-angle-tail radio sources. I: The Begelman, Rees, and Blandford model , 1992 .

[75]  T. Jones,et al.  Time-dependent evolution of cosmic-ray-mediated shocks in the two-fluid model , 1990 .

[76]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[77]  L. Drury,et al.  Hydromagnetic shock structure in the presence of cosmic rays , 1981 .

[78]  F. Owen,et al.  The wide-angle tailed radio galaxy 1159 + 583 - Observations and models , 1979 .

[79]  M. Rees,et al.  A twin-jet model for radio trails , 1979, Nature.

[80]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[81]  J. Skilling Cosmic Ray Streaming—I Effect of Alfvén Waves on Particles , 1975 .

[82]  Martin J. Rees,et al.  A ‘Twin-Exhaust’ Model for Double Radio Sources , 1974 .

[83]  P. A. G. Scheuer,et al.  Models of Extragalactic Radio Sources with a Continuous Energy Supply from a Central Object , 1974 .

[84]  J. Skilling Cosmic Rays in the Galaxy: Convection or Diffusion? , 1971 .